Лучшие программируемые логические контроллеры на 2021 год

PAC добавлены к линейке PLC

В линейке PLC Modicon, представленной в 1968 году, появился контроллер Modicon M340 PAC, платформа, реализующая функции коммуникаций, управления перемещением и сбора данных в различных средах программирования. Семейство M340 упрощает установку и эксплуатацию, используя один программный продукт: Unity Pro, полностью соответствующий стандарту IEC 61131-3. Предлагая на выбор любой из 5 языков IEC, графическое программирование, и расширенную online-поддержку, M340 обеспечивает быстрое выполнение, как логических, так и математических операций. Контроллер имеет 4 Мбайт внутренней памяти (расширяемой до 16 Мбайт), 256 Кбайт данных, и способен выполнять до 70 Кбайт программного кода.

www.us.telemecanique.comSchneider Electric

Дополнительные возможности и функции ОВЕН ПЛК

При разработке контроллеров были отобраны самые востребованные функции аналогичных изделий ведущих мировых производителей, поэтому созданные компанией ОВЕН контроллеры ПЛК100 и ПЛК150 обладают современными расширенными функциональными и эксплуатационными возможностями. Первое — это наличие встроенного аккумулятора резервного питания, который позволяет сохранить данные и результаты промежуточных вычислений, а также функцию обмена по сети Ethernet после отключения основного питания (до 10 минут без перезагрузки). Второе — если всё-таки основное питание отсутствовало более 10 мин, то при перезагрузке ОВЕН ПЛК его выходы будут переведены в безопасное состояние. То же произойдет в случае аварийной ситуации. Третье — большой объем внутренней энергонезависимой Flash-памяти и наличие специализированной файловой системы даёт возможность сохранить проект CoDeSys непосредственно в контроллере. Встроенная Flash-память может быть использована для хранения архивов данных или результатов измерений. Архивы можно считать непосредственно из ПЛК через интерфейсы RS-232 или Ethernet и открыть в программе обработки электронных таблиц или текстовом редакторе. Дополнительно отметим, что ПЛК оснащён часами реального времени с собственным аккумуляторным питанием, имеет удобные надёжные винтовые клеммы и покупателю не требуется приобретать специальные кабели для подключения. Количество входов и выходов ОВЕН ПЛК может быть расширено путем подключения модулей ввода/вывода ОВЕН МВА8 и МВУ8, которые поддерживают интерфейс RS-485. Подробная информация о контроллерах, а также специальная библиотека функциональных блоков, таких как ПИД-регуляторы с автонастройкой коэффициентов, регуляторы положения трёх-позиционных исполнительных механизмов (задвижек), адаптивные регуляторы находятся в свободном доступе на сайте www.owen.ru.

Таблица. Технические характеристики контроллеров ОВЕН ПЛК100 И ОВЕН ПЛК150

Параметры
ОВЕН ПЛК100
ОВЕН ПЛК150
Общие сведения
Тип корпуса
для крепления на 35-мм DIN-рейку, длина 105 мм
Степень защиты корпуса
IP20
Диапазон рабочих температур
-20…+70 °С
Напряжение питания (два варианта исполнения)
=24 В/~220 В
Потребляемая мощность
б Вт
Индикация на передней панели
светодиодная
Ресурсы
Центральный процессор
32-разрядный RISC-процессор 200 МГц на базе ядра ARM9
Объём оперативной памяти
8 Mбайт
Объём энергонезависимой памяти хранения программ
4 Mбайт (Flash-память, специализированная файловая система)
Размер Retain-памяти
4 кбайт
Дискретные входы
Количествоь дискретных входов
8
6
Тип сигнала дискретного входа: • =24 В • ~220 В
15..24 В соответствует логической 1, 0…5 В — логическому 0 сухой контакт (разомкнут — логический 0; замкнут — логическая 1)
Гальваническая изоляция дискретных входов
на 1,5 кВ, групповая
Рабочая частота дискретных входов
до 10 кГц
Аналоговые входы
Количество аналоговых входов
нет
4
Предел основной приведённой погрешности

0,5 %
Типы поддерживаемых датчиков и входных сигналов (подключение датчика с выходным унифицированным сигналом тока или напряжения осуществляется напрямую и не требует согласующих резисторов)

термопреобразователи сопротивления медные, платиновые, никелевые 50,100, 500,1000 Ом (по двухпроводной схеме); термопары; ток 0…5 мА, 0(4).20 мА; напряжение 0…1 В, 0…10 В; сопротивление до 5 кОм

Время опроса одного аналогового входа

0,5
Дискретные выходы
Количество дискретных выходов и варианты их исполнения
б э/м реле (220 В, 8 А) 12 транз. кл., коммутирующих +Uпит
4 реле (220 В, 4 А)
Гальваническая изоляция дискретных выходов
1,5 кВ, индивидуальная
Аналоговые выходы
Количество аналоговых выходов

2
Разрядность

10 бит
Тип выходного сигнала (варианты исполнения): • тока • напряжения • универсальный (программное переключение типа выходного сигнала)

4…20мА 0…10В 0…10 В или 4…20 мА
Наличие встроенного источника питания
общий, гальванически изолированный (1,5 кВ)
Интерфейсы связи
Интерфейсы
Ethernet 10/100 mbps, RS-485, RS-232 – 2 канала, USB-Device, USB-Host
Ethernet 10/100 mbps, RS-485,RS-232
Скорость обмена по интерфейсам RS
настраиваемая, до 115200 bps
Протоколы
ОВЕН, Modbus RTU, Modbus ASCII, Modbus TCP, Dcon, Gateway (протокол CoDeSys)
Программирование
Среда программирования
CoDeSys 2.3
Языки программирования
IL, ST, LD, SFC, FBD + дополнительный язык CFC
Размер пользовательской программы
ограничен размерами свободной памяти (около 1 млн инструкций)
Интерфейс для программирования и отладки
RS-232, Ethernet или USB

С чего всё начиналось?

Все начиналось с построения релейно-контактных систем управления, представляющих из себя огромные шкафы, набитые проводами и релейными модулями. В эти шкафы приходили сигналы от датчиков, а на выходе формировались команды исполнительным устройствам. Кроме того, что они были больших размеров, такие системы управления неудобны тем, что они совершенно не гибкие: для того, изменить логику управления, необходимо вручную перебирать всю электрическую схему. С развитием микропроцессорной техники на смену релейным шкафам пришли ПЛК – устройства, выполняющие те же функции, но имеющие принципиально другой механизм преобразования входных сигналов в выходные. Такое преобразование в ПЛК выполняется в соответствии с записанной программой. С появлением контроллеров размеры систем управления уменьшились в десятки раз, значительно упростился процесс их разработки и последующих изменений.

Структура и устройство ПЛК

Контроллер можно образно предоставить в формате мини-компьютера, но очень компактного и с особенностями. ПЛК, как и ПК, состоят из оперативной памяти, процессора, вспомогательного периферийного оборудования. Однако, дело еще и в том, что промышленные контроллеры должны выполнять не только расчетные задачи, как ПК, но и заниматься сбором информации от массы устройств – это датчики, сенсоры. Также контроллер и выдают сигналы в цепи.

Сейчас выпускаются контроллеры в различных форм-факторах. Это:

  1. Устройство типа «всё в одном». В одном корпусе объединен процессор, память, выходы/входы;
  2. Распределенные решения – процессорный модуль с обвязкой сделан в виде отдельного блока, а по шине или через интерфейсы подключатся модули для вывода и ввода.

Первые модели встречаются очень часто, однако, они рассчитаны на эксплуатацию в малых объектах и системах, где нужно обрабатывать малое количество сигналов.

Второй вид контроллеров используют в промышленности гораздо шире – производства с полнофункциональными АСУ требуют значительно большего числа сигналов, которые требуется обрабатывать. Если производство масштабное, то удобнее разнести модули вводы вывода по территории с объединением в единую сеть, которая подчиняется отдельному логическому контроллеру. Такие сети называют полевыми сетями или fieldbus. К этой седи подключаются датчики, исполнительные системы, которые являются интеллектуальными, так как имеют эту возможность.

Существует масса видов полевых сетей. Стандарт IEC61158 (МЭК61158) включает в себя 8 видов сетей. А до введения этого стандарта каждый производитель придумывал и использовал свою полевую сеть.

В структуре ПЛК имеется базовые компоненты:

  • Модуль процессора;
  • Блок питания;
  • Модули для ввода/вывода.

Процессорный модуль оснащен встроенной памятью. Имеются разъемы для программатора, удаленных устройств, для подключения к сетям. Питание реализовано в виде отдельного блока. Модули могут быть дискретными либо аналоговыми.

В зависимости от того, сколько каналов для ввода и вывода и какой тип процессора, модули ввод/вывод могут быть установлены на одном шасси с ЦП или на нескольких. До конца 80-х годов модули для ввода и вывода данных располагались отдельно от процессора. В стандартном контроллере современного типа модуль входов и выходов находится на одном шасси с микропроцессором. Некоторые ПЛК позволяют устанавливать более одного микропроцессора.

Модели меньших размеров очень часто предназначены под DIN-рейку. Самые компактные микро или даже нано устройства имеют всю систему, включая адаптер питания и систему ввода/вывода в одном корпусе. Микро-контроллеры иногда оборудуются встроенными панелями для настройки и мониторинга. Большинство микро-решений имеют определенное количество каналов входов/выходов и увеличить их не возможно. Как пример — плата ардуино

Выбор ПЛК

Выбор платформы автоматизации

Выбор платформы определяет и весь ваш будущий выбор.

ПЛК является первым пунктом в выборе платформы.

Правильный выбор платформы позволяет минимизировать расходы жизненного цикла системы управления:

  • склад запасных частей и сервисное обслуживание
  • обучение и сертификацию обслуживающего персонала
  • приобретение лицензий на средства разработки прикладного ПО
  • интеграцию (бесшовная интеграция)
  • миграцию (переход со старого оборудования на новое)
  • программы и сикдки для ключевых клиентов

Определение количества точек ввода-вывода

Желательно максимально точно определить общее количество точек ввода-вывода (с учётом резервирования), чтобы подобрать ПЛК соответствующей производительности,
или заранее предусмотреть модель контроллера с большим запасом по расширяемости.

  • Дискретные входы (стандартные и быстродействующие импульсные)
  • Аналоговые входы для подключения датчиков:
    • токовых (0..20мА, 4..20мА)
    • «напряженческих» (-10..+10В, 0..+10В)
    • термопар и термосопротивлений (способ подключения: 2-х, 3-х или 4-х проводное подключение)
  • Дискретные выходы (мокрый контакт)
  • Релейные выходы (сухой контакт):
    • тип нагрузки (резистивная, индуктивная, резистивно-индуктивная)
    • величина тока (в Амперах)
    • напряжение (~220В, =24В)
  • Аналоговые выходы:
    • токовые (0..20мА, 4..20мА)
    • «напряженческие» (-10..+10В, 0..+10В)
  • Интерфейсы для подключения угловых или линейных датчиков скорости, положения (энкодеров, резольверов, синусно-косинусных)

Определение архитектуры системы управления

  1. Составить список объектов автоматизации (производственных площадок, цехов, участков, технологических линий, подсистем)
  2. Определиться с количеством ПЛК: если объекты управляются независимо друг от друга и вводятся в эскплуатацию поочередно, то можно предусмотреть для них
    отдельные контроллеры
  3. В зависимости от объёма и скорости обмена данными, территориального расположения объектов управления необходимо выбрать тип и топологию промышленной сети,
    требуемое коммуникационное оборудование
  4. Для минимизации длины кабельных соединений используются станции распределённого ввода-вывода
  5. Расписать точки ввода вывода по контроллерам, шкафам локального и децентрализованного ввода-вывода, определить количество и типы модулей ввода-вывода с
    учётом запаса по свободным каналам ввода-вывода
  6. В зависимости от направления обмена данными между ПЛК необходимо правильно выбрать конфигурацию Master – Slave (Ведущий – Ведомый): контроллеры типа Slave
    не могут обмениваться данными друг с другом

Масштабируемость

Масштабируемость – это возможность подобрать промышленный контроллер оптимальной конфигурации под конкретную задачу (не переплачивая за избыточную функциональность),
а при необходимости расширения – просто добавить недостающие модули без замены старых.

Выбор блоков питания

Контроллеры подключаются к стабилизированным импульсным источникам питания. Необходимо аккуратно подсчитать суммарный ток, потребляемый всеми модулями
контроллера и подобрать блок питания с соответствующей нагрузочной способностью.

Пример последствий неправильного выбора блока питания

Выходные модули установки приготовления клея для варки целлюлозы иногда отключались и испорченный клей приходилось выбрасывать тоннами.
К финскому проекту ни у кого претензий не возникало. Заменили все модули ввода-вывода — не помогло. Грешили на случайные помехи из-за плохого заземления.
Оказалось, что в определённых ситуациях (как-бы случайно) срабатывало такое «большое» количество входов и выходов,
что суммарный потребляемый ими ток на мгновение превышал допустимый выходной ток блока питания и модули вывода отключались.
Заменили блок питания на более мощный и проблема была решена.

  • Очень полезен программный симулятор, с помощью которого можно отладить программу без подключения к ПЛК
  • Удобно, если для программирования ПЛК можно использовать стандартный ноутбук и стандартный кабель (USB или Ethernet)
  • Проще найти программиста, если контроллер поддерживает стандартные языки программирования IEC61131:
    • LD (Ladder Diagram) – графический язык релейной логики
    • IL (Instruction List) – список инструкций
    • FBD (Function Block Diagram) – графический язык диаграмм логических блоков
    • SFC (Sequential Function Chart) – графический язык диаграмм состояний
    • ST (Structured Text) – текстовый язык программирования высокого уровня

Конструкция и принцип работы

Программируемый модуль – это тот же ПК, только в уменьшенном формате. Контроллеры Siemens rlu, logo, lcd, Allenbernecker, Bradley, desigo, pxc, rainer, rmu, rmub, rvd, rvs, rwd,rwx состоят из таких же деталей: процессор cpu, микропроцессор, микросхема, интегральная схема, источник питания, диск.

Мозг всей PLC-системы является модуль CPU. Этот модуль обычно находится рядом с источником питания. Производители предлагают различные виды процессоров, основанных на сложности, необходимой для системы.

Процессор состоит из микропроцессора, микросхемы памяти и других интегральных микросхем для контроля логики, мониторинга и связи. ПЛК имеет различные режимы работы. В режиме программирования он принимает информацию с ПК, благодаря чему обеспечено выполнение даже очень сложных задач.

Что такое микро ПЛК (микроконтроллер PLC)?

Разработки более новых технологий в области производства микроэлектроники явились результатом создания компактного  недорогого прибора — микро ПЛК. Соотношение цена / качество для этого устройства превышает аналогичные показатели индустриальных программируемых реле.

Обладающий расширенным функционалом и улучшенным аппаратным интерфейсом, программируемый логический микроконтроллер всё чаще рассматривается в качестве замены традиционных программных релейных устройств

Ниже отмечены некоторые из преимуществ микро ПЛК перед программируемым реле:

  • модульная расширяемость,
  • лучшее соотношение цена / качество,
  • увеличенное число опций коммуникаций,
  • легко добавляемый полнофункциональный интерфейс оператора,
  • легко создаваемые сложные программы управления.

Современные микро ПЛК поставляются различными по модельному исполнению, имеют встроенный ввод / вывод и съёмные клеммные колодки для удобного подключения. Дополнительными модулями обеспечивается расширение интерфейса ввода / вывода, если таковое необходимо.

Процессоры микро ПЛК обеспечивают различные комбинации дискретных и аналоговых входов, дискретных и аналоговых выходов. Допустимо расширение до 142 дискретных входов / выходов или 54 аналоговых каналов.

Техническая конфигурация современного микроконтроллера ПЛК

Модели микро ПЛК, оснащённые часами реального времени, предлагают различные варианты связи. Встроенная связь может включать многоцелевой порт Ethernet 10/100 Мбит/с для:

  • программирования,
  • подключения к сети,
  • управления устройствами через протокол Modbus TCP.

Другие опции связи в микро ПЛК включают порты связи RS-232 для программирования / настройки протоколов MODBUS RTU (ASCII). Связь RS-485 также доступна для конструкций подобного рода. Эти параметры связи позволяют легко подключаться к широкому спектру терминалов интерфейса оператора.

Вид электронной платы одной из моделей микроконтроллера, которая наглядно демонстрирует преимущества устройства по габаритным размерам с учётом более выраженных функциональных возможностей

Независимо, используется ли последовательный порт или Ethernet, простое подключение обеспечивает расширенные возможности текстового и графического отображения на сенсорном экране. По размерам экран ПЛК больше, чем у программируемых реле.

Ограниченный набор команд сокращает время обучения, среда программирования на ПК предоставляется бесплатно. Микро ПЛК обеспечивает более масштабируемое решение, нежели программируемое реле, обеспечивая пространство для дальнейшего расширения.

По мере того, как индустриальная машина обновляется (совершенствуется), в состав микро ПЛК допускается внедрять более сложное программирование и дополнительные операции ввода-вывода. Однако для программируемых реле существуют ограничения наращивания ресурса.

Удаленное управление и мониторинг

Контроллеры имеют гибкие возможности для коммуникации с другим оборудованием. Эти возможности позволяют удаленно управлять устройствами, а также интегрировать ПЛК в системы автоматизированного управления и сбора данных.

Операторская панель или HIM – это устройство для визуализации. Она может быть встроенной или подключаться кабелем. Существует масса различных типов таких решений – от простых цифровых с кнопками до серьезных сенсорных с функцией оперативного мониторинга и коррекции параметров.

SCADA – это аббревиатура означает систему диспетчеризации и сбора данных. Это программные пакеты, которые позволяют разрабатывать приложения в режиме реального времени. Также пакет имеет инструменты сбора и обработки данных, архивирования и отображения или управления.

Веб-интерфейс позволяет получать доступ к ПЛК по локальным или глобальным сетям. В зависимости функциональности контроллер может не иметь операторской панели, но есть порт для подключения ПЛК к Ethernet. Тогда устройство можно настраивать удаленно по веб-интерфейсу или с ноутбука.

Более продвинутое решение реализовано в семействе ПЛК Siemens – встроенный веб-сервер. Он позволяет выполнять мониторинг, а также управлять системой. Сегодня в ПЛК реализованы функции подключения к облакам для осуществления удаленного контроля.

Ограничения ПЛК

ПЛК имеет ограниченную память, программное обеспечение и периферийные возможности, по сравнению с персональным компьютером ПК. Управление движением (например, робототехника или сложная автоматизированная система) требует огромного количества входов/выходов, требующих дополнительных модулей управление ПЛК или внешней электроники. Тем не менее, стоит отметить, что компьютер способен обрабатывать гораздо большее количество информации, причем быстрее, что может значительно уменьшить физический размер и обеспечить необходимую вычислительную мощность для внедрения систем машинного зрения, управления движением и обеспечить быструю обработку больших потоков данных. Постоянный рост обрабатываемой информации связан с постепенным внедрением некоторыми компаниями промышленных интернет вещей IIoT в производственные линии и промышленные объекты, которые требуют больших вычислительных мощностей.

Оригинальные производители оборудования (англ. original equipment manufacturer OEM) способны увеличить производительность оборудования, позволяя машинам одновременно выполнять несколько операций. Максимально интенсивные И/ИЛИ вычисления критически важных процессов, запущенных одновременно, может привести к перегрузке программируемого логического контроллера. Для уменьшения времени обработки критически важных процессов машины могут использовать несколько вычислительных платформ. Как правило, они включают в себя один или несколько контроллеров движения и один или более наблюдающий процессор, который поддерживает интерфейс оператора для программирования, информации работы машины, сбора данных, функции техподдержки. Однако, использование нескольких процессоров является более дорогим. Новое программное обеспечение, ориентированное на платформы ПК, может помочь решить данную проблему, хотя…

ПК не так надежен и ему трудно «выживать» в промышленных условиях, таких как повышенная запыленность и влажность. Использования ПК с боле сложным программным обеспечением или большим количеством программных опций, занимает гораздо больше времени для обучения обслуживающего персонала. Усовершенствованное программное обеспечение может потребовать наличие программиста для проведения технического обслуживания, а также выполнение ремонтных работ и установки обновлений. Программное обеспечение ПЛК может быть базовым, но имеющие свои проверенные временем стандартные языки, которые могут обеспечить долговечность устройства, несмотря на его скорость и линейный характер.

ПЛК обычно используют в отрасли стандартный набор языков программирования (МЭК 61131-3), в том числе LAD диаграммы. LAD диаграммы строятся по аналогии с электрическими схемами, что позволяет значительно упростить обучение персонала, проведения технического обслуживания и ремонта. В большинстве случаев вполне возможно обойтись без программиста. Другой язык из стандарта МЭК 61131-3 — структурированный текст, который похож на язык «высокого уровня». Тем не менее, использование других нестандартных языков высокого уровня, таких как C ++ или Visual Basic, может быть трудно с ПЛК. Только в последнее время новые программные инструменты позволяли пользователям общаться с ПЛК так, как если бы это был обычный ПК.

Последовательная программа ПЛК сканирует все инструкции в каждом цикле. Цикл сканирования занимает примерно 10 мс или чуть больше. После завершения выполнения всех инструкций программа переходит к следующему сканированию. Если инструкция не выполняется в установленное время, то это вызывает сообщение об ошибке и выполнение программы прекращается. Это программное обеспечение жесткого времени может ограничивать продолжительность программы и любые входные сигналы с частотой менее 100 Гц.

Например, если необходимо обрабатывать сигнал от датчика скорости с номинальными оборотами 1200 об/мин (частота сигнала 1200/60 = 200 Гц), микроконтроллер на базе ПЛК не может корректно измерять скорость используя такой вход. Необходима интеграция специального модуля с декодером или счетчиком на интегральных микросхемах, который преобразует сигнал от датчика в нормально-обрабатываемый микроконтроллером. Такие преобразовательные модули часто используются во многих системах. Также стоит отметить и необходимость модулей вывода на примере управление соленоидом с частотой работы ШИМ в 10 кГц. Для управления таким устройством с помощью ПЛК необходим модуль вывода с ШИМ генератором. Добавление таких модулей увеличивает стоимость системы в 2-3 раза.

Место ПЛК в системе управления

До создания миниатюрных интегральных схем рука оператора буквально не успевала переключать режимы на пульте цепи управления. Использование контроллерных блоков «Сегнетикс», «Дельта» и подобных способствовало снятию нагрузки с человека.

Ее переложили «на плечи» машин с выводом на экран данных мониторинга, отображенных в виде мнемосхем и изменяемых параметров. На ПЛК возлагаются задачи по опросу датчиков и регистров, обработке поступающей информации.

Без микроконтроллеров не было бы РСУ, АСУ, сложных автоматных комплексов управления технологическими процессорами. Используя сетевой трафик, ПЛК анализируют данные, успевая проверять состояние портов входа. Главный недостаток, особенность микроконтроллеров состоит в необходимости прошивки, создания программы для работы.

Впрочем, его следует воспринимать двояко: индивидуально создаваемое ПО позволяет проектировать узкоспециализированные изделия под конкретные задачи.

Аспекты программиста

Чаще всего программисты встраиваемых систем противопоставляют CODESYS интегрированным компиляторам языка С/C++. Попробуем сравнить их технически (результаты сравнения приведены в таблице).

Как показано в таблице, для человека, имеющего образование по специальности программирование, C/C++ является естественным выбором. Переход к использованию МЭК-языков потребует некоторых усилий по освоению. Обычно начальный дискомфорт в CODESYS вызывает отсутствие главного цикла и функций ввода/вывода, которые полностью «спрятаны» в системе исполнения. Существенно отличается работа с таймерами. Ближе всего к языку C в CODESYS язык ST. Как правило, для его уверенного освоения программисту достаточно нескольких часов .

Использование МЭК-языков может не дать явных преимуществ мгновенно. Они проявляются ярко при необходимости пояснения прикладной программы другим людям. В этом смысле весьма эффективна связка языков SFC и ST. Диаграмма SFC визуально представляет интуитивно понятный алгоритм работы, буквально «оживающий» в онлайновом режиме. Действия шагов SFC описываются на привычном высокоуровневом языке ST.

Типы ПЛК

Все ПЛК, выпускаемые Schneider Electric, Mitsubishi, Beckhoff, Omron, Segnetics или Unitronics, четко разделяются по типам. Это же относится к классификации российской продукции, представленной компаниями «Овен», «Контар», «Текон» и другими. Конструктивно устройства принято обозначать как моноблочные и модульные.

В первом типе содержится полный набор входных, выходных цепей, процессор, источник энергии. Во втором предусмотрена сборка готового ПЛК из отдельных частей. Согласно МЭК 61131, количество и состав модулей варьируются в соответствии с назначением, характеристиками поставляемого заказчику устройства.

Модульный микроконтроллер может управлять посредством Ethernet соединения малопроизводительным собратом, выполняющим специфично назначенные функции (диагностика состояния периметра, безопасность охраняемой зоны). Маломощный адаптер питания в этом случае является отдельным модулем. Обобщенно функциональные возможности второго вида превосходят первый. Но в отдельных ситуациях (микроконтроллер управления чайником Berghof) достаточно моноблочного ПЛК.

Главное достоинство такой конструкции — компактность. При этом полностью завершенная конструкция платы, блока контроллера оборудуется дисплеем и устройством ввода-вывода, кнопочной панелью. Типичный пример — «умный» автоматный моноблок, отвечающий за стабилизацию напряжения.

Из нескольких ПЛК, смонтированных на стандартную рейку, набирается укрупненный узел управления. Первоначально конфигурация микроконтроллеров подразумевала замену существовавших релейных, полупроводниковых схем. Со временем задачи усложнились, но и сохранившиеся ограниченно производительные 8 и 16 разрядные процессоры по-прежнему востребованы в промышленности.

Итог

Выбирая контроллер, рекомендуется обращать внимание на число точек (вывод и ввод), потому что этот параметр говорит о возможности прибора в коннекте с дополнительными устройствами. Рекомендуется заблаговременно определиться с минимальным числом коммуницирующий техники

Важно учесть, что приборы малой категории располагают не внушительным числом разъемов

Если покупатель заинтересован в технике с количеством разъемов более 8 единиц, стоит заострить внимание на моделях средней и большой мощности. При интеграции конкретной модели в производство с уже предустановленной техникой необходимо проверить возможность совместимости нового контроллера и работающего оборудования

В случае несовместимости между старой и новой техникой, обмен информацией и исполнение задач исключены. В редких случаях допускается контакт с мелкой электрикой и предустановленным аппаратом, но коннект с полноценным устройством, зачастую, невозможен.

Контроллеры средней и большой мощности предоставляют владельцу широкий спектр возможных моделей для совместной работы. Электроника малой группы подобных возможностей не предоставляет, а оператору допускается подключать лишь мелкие приборы, вроде датчиков, но лишь на конкретных моделях.

В старые времена, контроллеры считались маломощным и медлительным оборудованием для произведения автоматизации. Современные реалии позволяют осуществлять автоматизацию без лишних промедлений, а мощностных показателей хватает даже у наиболее бюджетных приборов. Оператору стоит учитывать, что оценка скорости работы конкретного контроллера возможна только при осуществлении работы техникой. Проще говоря, необходимо составить тестовую программу и проверить скорость работы на предмет соответствия требованиям производства. На рынке существуют бренды, которые интегрируют функцию оценки цикличной скорости в продукцию.

Также, программные возможности в контроллерах ограничиваются по определению, но, чтобы уложиться в оные границы, необходимо располагать гигантским производством (вряд ли в мире существуют производства подобного масштаба). Статистические данные говорят о том, что четверть объемов мощностей среднего контроллера уходит на обслуживание техпроцесса, а остальной потенциал задействован в обработке вышеупомянутой операции (выявление и устранение ошибок). Также, рабочий баланс напрямую связан с манерой составления программы. Грамотный оператор способен произвести расчёт, который обеспечит автоматизацию и на контроллере малой мощности, а новички, нередко, чрезмерно загружают и передовых представителей подобной техники.

Рекомендуется заострять внимание также и на вопросах среды при составлении программ для контроллера. Если опираться лишь на функционал прибора, существует вероятность ошибиться с выбором

Отправляясь покупать ПЛК, соискателю стоит придерживаться следующих пунктов:

  1. Выяснить наименование бренда и серии предустановленной на производстве электроники.
  2. Исходя из предыдущего пункта выбрать конкретный бренд (либо соответствующий предустановленному, либо располагающий возможностью к совместной работе).
  3. Убедится в наличии достаточного числа разъемов у выбранной модели.
  4. Учесть сетевые возможности электрики работающей и новой.
  5. Учесть совместимость выбранного оборудования и пункта управления.
  6. Учесть мнение оператора (если оный располагает достаточным опытом) о выбранной технике.

Остальные критерии зависят от платежной способности покупателя и личных взглядов его на ПЛК. Также, стоит учитывать, что подобные приборы нередко отсутствуют на складах дистрибьютора, поэтому необходимо заранее рассчитывать время на покупку (возможно придется ждать завоза на склад) и установку оборудование.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector