Как проверить конденсатор при помощи мультиметра

Проверяем конденсатор мультиметром в режиме омметра

Для примера мы свами выполним проверку четырех конденсаторов: два полярных (диэлектрических) и два неполярных (керамических).

Но перед проверкой мы должны обязательно разрядить конденсатор, при этом достаточно замкнуть его контакты  при помощи любого металла.

Для того чтобы перейти в режим (омметра) сопротивления, мы перемещаем переключатель в группу измерения сопротивления, для того чтобы установить наличие обрыва или короткого замыкания.

Итак, первым делом проверим полярные кондиционеры (5.6 мкФ и 3.3 мкФ), установленных ранее у неработающих энергосберегающих лампочек

Разряжаем конденсаторы путем замыкания их контактов обычной отверткой. Вы можете использовать, удобный для вас, любой другой металлический предмет. Главное чтобы к нему плотно прилегали контакты. Это позволит нам получить точные показания прибора.

Следующим шагом выставляем переключатель на шкалу 2 МОм и соединяем контакты конденсатора и щупы прибора. Далее наблюдаем на дисплее быстро увиливающие параметры сопротивления.

Вы спросите меня, в чем дело и почему на дисплее мы наблюдаем «плавающие показатели» сопротивления? Это объяснить довольно просто, поскольку питание прибора (батарейка) имеет постоянное напряжение и за счет этого происходит зарядка конденсатора.

С течением времени конденсатор все больше и больше накапливает заряд (заряжается), тем самым увеличивая сопротивление. Емкость конденсатора влияет на скорость зарядки. Как только конденсатор получит полную зарядку, значение его сопротивления будет соответствовать значению бесконечности, а мультиметр на дисплее покажет «1». Это параметры рабочего конденсатора.

Нет возможности показать картинку на фотографии. Так для следующего экземпляра емкостью 5.6 мкФ,  показатели сопротивления начинаются с 200 кОм и плавно возрастают до тех пор, пока не преодолеют показатель 2 МОм. Эта процедура не занимает более -10 сек.

Для следующего конденсатора емкостью 3.3 мкФ происходит все аналогично, но время процесса занимает менее — 5 сек.

Проверить следующую пару неполярных конденсаторов можно точно также по аналогии с предыдущими конденсаторами. Соединяем щупы прибора и контакты, следим за состоянием сопротивления на дисплее прибора.

Рассмотрим первый «150nК». Вначале его сопротивление несколько снизится примерно до 900 кОм, затем следует его плавное увеличение до определенной отметки. Время процесса занимает — 30 сек.

При этом на мультиметре модели МБГО переключатель устанавливаем на шкалу 20 МОм (сопротивление приличное, очень быстро идет зарядка)

Процедура классическая, снимаем заряд при помощи замыкания контактов отверткой:

Смотрим на дисплей, отслеживая показатели сопротивления:

Делаем вывод, что в результате проверки все представленные конденсаторы исправны.

Проверка без приборов

Без измерения параметров о неисправности свидетельствуют дефекты внешнего вида:

  • пятна на поверхности корпуса;
  • вздутие, деформация верхней насечки на импортных электролитических конденсаторах;
  • протечка электролита.

Другие способы контроля неисправности применяют в домашних условиях. Следует:

  • подключить к источнику питания, напряжение не должно превышать номинальное;
  • взять светодиод (низковольтную лампу с двумя проводами), дотронуться выводами светодиода до ножек конденсатора;
  • вспышка светодиода (кратковременное свечение лампы) подтвердят исправность.

Для определении работоспособности конденсатора большой ёмкости:

  • подключить к источнику питания, напряжение которого меньше номинального;
  • снять заряд металлическим предметом.

Наличие искры при разряде подтвердит годность

При снятия заряда соблюдать осторожность, принимать защитные меры, так как разряд сопровождается мощной искрой и звуком. Для уменьшения искры применяют разряд через резистор. https://www.youtube.com/embed/YEhaDKOCCEw

Возможные неисправности

Внутренняя схема магнетрона содержит множество деталей, и, если случается поломка, то причина может крыться именно в них. Случается так, что одна из частей пришла в негодность, но влияет на работу всей лампы. Следует понять, в чем причина неисправности, и решить проблему в домашних условиях. Как именно, мы расскажем далее.

  • Металлический колпачок отвечает за сохранность вакуума внутри трубы.Зачастую он ломается, и требуется новая замена;
  • Радиатор может прийти в негодность, если деталь перегорает;
  • Нить накаливания в результате перегрева может оборваться. Для выявления такой неисправности нужен специальный прибор;
  • Фильтр может также перестать нормально функционировать, следует проверять тестером. Исправный элемент будет показывать бесконечность, а сломанный — численное сопротивление;
  • Изменение герметичности детали из-за перегрева;
  • Нарушение работы высоковольтного диода;
  • Неисправность конденсатора высокого напряжения;
  • Разлом контактов предохранителя, основная задача которого не допускать перегрева.

Проверка мультиметром

Наиболее простым, и в то же время доступным способом тестирования является проверка мультиметром. Этот прибор способен измерять различные электротехнические величины, от сопротивления до напряжения и частоты. В частности, он может измерить и емкость конденсатора. Проверка емкости не происходит мгновенно. Тестеру нужно время для того, чтобы зарядить элемент до определенного уровня напряжения, а потом разрядить его. По величине тока разряда и времени производится заключение о емкости.

Измерение емкости

Перед установкой любых элементов в аппаратуру при ремонте или проектировании требуется протестировать их исправность и соответствие заданным параметрам. Поэтому необходимо знать, как проверить емкость конденсатора мультиметром. Нужно выполнить несколько простых действий:

  1. Установить измерительные щупы мультиметра в подходящие отверстия на его корпусе. Черный щуп — в отверстие с маркировкой COM, а красный — в гнездо с надписью Ом, Hz, U.
  2. Выбрать режим проверки конденсаторов ручкой на лицевой панели прибора. Обычно этот режим обозначен условным значком электроконденсатора — двумя параллельными линиями с выводами.
  3. Прикоснуться щупами мультиметра к выводам элемента. При этом на экране тестера должно отобразиться значение его емкости в микрофарадах. Обычно измерительный прибор показывает, в каких величинах производится измерение, либо эти данные есть на его измерительной шкале.
  4. Если полученное значение отличается от номинального более чем на допуск, указанный в описании этого типа электроконденсаторов (может быть от 0,5 до 80%), значит, элемент не должен применяться по назначению.

Знать, как измерить емкость конденсатора мультиметром, необходимо также и при проверке электроприбора на ошибки в работе. Любой электротехнический прибор может начать работать нестабильно, и причиной этого может служить выход из строя одного или нескольких элементов. Если провести измерение емкости используемых в приборе конденсаторов, можно выявить и устранить причину неисправности.

Тест сопротивления

Узнать, произошёл ли пробой элемента, также можно, измерив его сопротивление. Некоторые измерительные приборы не имеют возможности проверять емкость электроконденсаторов. Но такими измерителями все равно можно протестировать аппаратуру, если замерить величину сопротивления между обкладками используемых в ней конденсаторов.

Для этого нужно выполнить все действия, описанные для проверки емкости, но режим измерения нужно выбрать другой — проверку сопротивления. Этот режим обычно обозначен диапазоном измерения в Омах. Для проверки конденсаторов лучше выбрать диапазон, равный 200 Ом. Если при прозвонке элемента выявлено сопротивление ниже 50 Ом, такой элемент подвергся пробою и не может быть использован.

Прозвонить элемент можно также и внутри схемы, непосредственно в аппаратуре. Однако проверка конденсатора мультиметром, не выпаивая ни одну из его ножек, приводит к ошибкам измерения, так как тестируется также и вся остальная схема, находящаяся между измерительными щупами. Поэтому для измерения нужно выпаять хотя бы один из выводов элемента.

Знать, как проверить конденсатор мультиметром, не выпаивая, необходимо при кропотливой проверке электротехнических приборов на возможную неисправность, если точно известно, что неисправность заключается в одном из элементов. При этом следует выпаять одну из ножек каждого элемента и поочередно померить их сопротивление и емкость. Таким образом можно выявить вышедшие из строя элементы.

Проверка на отсутствие внутреннего обрыва

Обрыв – распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник. Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).

Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса. Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.

Таблица характеристик надежности конденсаторов.

Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки

Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать. Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке.

Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом – от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать. Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!

Будет интересно Как подключить комнатную антенну к телевизору: практические советы

Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва

Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки. Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.

По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет. Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм – для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.

При измерении таких высоких сопротивлений необходимо следить за тем, чтобы не касаться пальцами сразу обоих измерительных щупов. Иначе сопротивление кожи внесет свои коррективы и исказит все результаты. С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).

Принцип устройства

Конденсатор является приспособлением, имеющим способность копить определенный заряд электричества. Он представляет собой две пластины из металла, установленные параллельно, между которыми находится диэлектрик. Увеличение площади пластин увеличивает накопленный заряд в устройстве.

Конденсаторы бывают 2-х видов: полярные и неполярные. Все полярные приспособления – электролитические. Емкость их от 0.1 ÷ 100000 мкФ.

При проверке полярного приспособления важно соблюдение полярности, когда плюсовая клемма присоединена к плюсовому выводу, а минусовая к минусовому. Высоковольтными являются именно полярные конденсаторы, у неполярных – малая емкость

Высоковольтными являются именно полярные конденсаторы, у неполярных – малая емкость.


Микроволновка с указанием места расположения конденсатора

В цепь питания магнетрона микроволновки входит диод, трансформатор, конденсатор. Через них к катоду идет до 2-х, 3-х киловольт.

Конденсатор – это большая деталь весом до 100 гр. К нему присоединяется вывод диода, второй на корпусе. Вблизи блока размещается также цилиндр. Конкретно данный цилиндр представляет собой высоковольтный предохранитель. Он не должен допустить перегревание магнетрона.


Расположение конденсатора

Устройство электролитических и твердотельных конденсаторов

Радиокомпоненты такого класса применяются в электронных устройствах с высокими требованиями по габаритам. Поэтому вопрос компромисса между площадью обкладок (от этого зависит емкость) и размерами корпуса — головная боль разработчиков. Проблема решается технологически просто:

Изготавливается так называемых сэндвич, стоящий из двух тончайших обкладок, между которыми прокладывается слой пропитанной электролитом бумаги (в электролитических моделях) или токопроводящий полимер (твердотельные конденсаторы). Обычно используется танталовая или алюминиевая фольга. В качестве диэлектрика применяется естественный оксидный слой одной из пластин. У него низкая проводимость, которая определяет ток утечки емкости.

Такая конструкция может занимать достаточно большую (по меркам радиодеталей) емкость. Поэтому ее сворачивают в плотный рулон, где в качестве разделителя между слоями выступает тонкая электро-бумага (смотрим иллюстрацию). Она не участвует в схеме работы конденсатора.

Наружная оболочка выполнена из алюминия, на нее наносится информация о характеристиках.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса)

После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Как проверить электролитический конденсатор мультиметром

Все накопители заряда устроены примерно одинаково, только с применением разных материалов. Например, электролитические конденсаторы имеют две пластины из алюминиевой фольги (электроды), а между ними диэлектрик, материал с большим сопротивлением.

Электролитические неполярные конденсаторы

В качестве диэлектрика в электролитических конденсаторах используется бумага пропитанная электролитом, а для неполярных пленочных конденсаторов диэлектриком является керамика, стекло. Сопротивление бумаги ниже, чем керамики, поэтому электролитические конденсаторы имеют больший ток утечки (саморазряд) по сравнению с пленочными накопителями заряда.


Неисправность конденсаторов

В случае замыкания пластин выделяется тепло, испаряется электролит и происходит взрыв, который выворачивает все внутренности накопителя заряда. Чтобы электролитические конденсаторы не взрывались, на торце его корпуса выдавливается крест. При закипании электролита разрывается торец корпуса по линии креста и пары электролита выходят наружу, не разрывая корпус.

Поэтому на некоторых неисправных конденсаторах образуется вспучивание на торцах корпуса. По типу конденсаторы разделяется на полярные и неполярные. Полярные электролитические конденсаторы работают только при правильном подключении плюса и минуса к маркированным выводам конденсатора. В противном случае накопитель заряда выходит из строя.

Существуют также и электролитические неполярные конденсаторы, которые предназначены для работы в сетях переменного напряжения. Накопители пленочного типа относятся к неполярным емкостям. Соблюдение полярности в схемах для них не обязательно. Состояние конденсатора проверяется мультиметром на сопротивление или в режиме измерения емкости некоторыми мультиметрами (если имеется такой режим).


Проверка конденсаторов цифровым мультометром

Сопротивление диэлектрика электролитического конденсатора меняется от 100 Ком до 1 Мом. Перед проверкой электрического конденсатора нужно его разрядить. Если конденсатор небольшой емкости, то разрядить его можно, замкнув металлической отверткой вывода. Когда емкость большая и его номинальное напряжение высокое, разряжают накопитель через резистор 10 Ком, держа сопротивление инструментом с изолированными ручками.

Разряжать конденсаторы нужно в целях безопасности (особенно высоковольтные) и сохранения работоспособности мультиметра. Оставшееся напряжение на накопителе легко может вывести из строя измерительный прибор. При проверке электролитического полярного конденсатора мультиметром щупы прикладывают к его выводам в соответствии с полярностью, плюс прибора к плюсу накопителя.

Величину измеряемого сопротивления на приборе ставят от 100 Ком до 1 Мом, в зависимости от величины емкости. Для измерения большой емкости предел измерения сопротивления ставят 1 Мом. В начале измерения мультиметр покажет небольшое сопротивление, которое достигнет наибольшего значения при полной зарядке конденсатора. Если дисплей покажет ноль, значит неисправность ёмкости в коротком замыкании, а единица указывает на обрыв выводов.

Работоспособность ёмкости можно проверить, если зарядить ее от источника питания и замерить величину напряжения накопителя мультиметром. Если его рабочее напряжение 25 В, заряжают емкость от источника напряжением 9 — 12 В, в соответствии с полярностью. Показания на дисплее снимаются в момент прикосновения щупов к выводам ёмкости, потому что емкость начинает разряжаться через мультиметр, и напряжение будет падать.

Проверка конденсатора мультиметром в режиме омметра

Возникновение основных проблем с аппаратурой электронного типа предполагает решение вопроса, связанного с тестированием работоспособности конденсаторного устройства.

Простой визуальный осмотр такого элемента не позволяет получить максимально точные результаты, поэтому актуальной является проверка работы конденсатора при помощи мультиметра.

Проверка конденсатора – подключение к мультиметру

Наиболее доступным и удобным способом тестирования неисправного конденсаторного устройства является использование мультиметра с выставленным режимом омметра.

Как проверить неполярный конденсатор мультиметром

Стандартные устройство неполярного типа выглядит аналогично обычному электролитическому конденсаторному элементу, но для такого вида прибора полярность напряжения не является важной. Такие конденсаторные элементы устанавливаются в схемах, имеющих переменный или пульсирующий ток. Отличить неполярное устройство можно при визуальном осмотре: на корпусе отсутствием маркировка полярности

Отличить неполярное устройство можно при визуальном осмотре: на корпусе отсутствием маркировка полярности.

Неисправные конденсаторы

Технология проведения тестирования конденсатора неполярного типа в режиме омметра следующая:

  • переключение мультиметра в режим замера показателей сопротивления;
  • установка максимальных пределов из возможно допустимых показателей;
  • подключение измерительных щупов на выводы тестируемого конденсаторного устройства;
  • замер при помощи прибора уровня сопротивления утечки.

Работоспособные кондиционеры не показывают никаких значений, поэтому на дисплее высвечивается единица, свидетельствующая о сопротивлении утечки выше 2.0 мегаом. Фиксация измерительным прибором сопротивления ниже 2.0 мегаом свидетельствует о большой утечке.

Важно помнить, что держать двумя руками конденсаторные выводов и металлические щупы измерительного прибора категорически запрещается, так как в этом случае будут получены некорректные данные тестирования.

Проверка полярного конденсатора

К категории конденсаторных устройств полярного типа относятся электролитические элементы, которые по сравнению с неполярными приборами, подвержены достаточно быстрому процессу старения. При подаче избыточного напряжения устройство может взрываться. Чтобы избежать подобной проблемы, в процессе изготовления на крышку корпуса наносится несколько специальных насечек.

Тестирование полярных конденсаторных элементов электролитического типа посредством омметра имеет несколько важных отличий. Показатели стандартного сопротивления утечки конденсаторного устройства полярного типа, как правило, составляют 100 килoOм или более, поэтому перед выполнением проверки, элемент требуется разрядить, замыкая выводы накоротко. В противном случае значительно возрастает риск поломки измерительного прибора.

Проверка полярного конденсатора

Технология проведения тестирования конденсатора полярного типа в режиме омметра следующая:

  • переключение мультиметра в режим замера показателей сопротивления;
  • установка предела измерения уровня сопротивления на показатели 200К (200000 Ом);
  • фиксация щупов на выводы с соблюдением полярности;
  • измерение прибором уровня сопротивления утечки.

Вне зависимости от модельных особенностей, все разновидности современных конденсаторов электролитического типа обладают достаточно большой емкостью, поэтому в процессе выполнения проверки происходит стандартная подзарядка устройства.

Продолжительность такого процесса составляет всего несколько секунд. При этом отмечается рост изначального уровня сопротивления, который сопровождается увеличением цифровых показателей на дисплее.

Исправность проверяемых устройств оценивается по значениям замеряемого мультиметром сопротивления. Если показатели равны 100 килоОм или более, то конденсатор полярного типа исправен и не потребует замены.

Измерение напряжения конденсатора

Учтите, что при проверке накопитель теряет свой заряд и напряжение, соответственно, будет быстро падать, поэтому важно увидеть цифру, которая появилась в самом начале.Есть и более простой способ проверки, но он действенен только для конденсаторов с достаточно большой емкостью. Зарядив накопитель полностью, возьмите обыкновенную отвертку с изолированной рукояткой, поднесите ее металлическую часть к его выводам и замкните их

Если в результате проскочила яркая искра, значит, элемент рабочий. Если же искра очень слабая или вовсе отсутствует, значит, конденсатор не держит заряд.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector