Сколько энергии потребляет бойлер: расчёты и показатели в сутки и месяц
Содержание:
- Сколько кВт·ч энергии тратится на нагрев воды
- Способ подключения
- Способы, как можно увеличить теплоотдачу
- Ход работ: вычисления процента допустимых теплопотерь для загородного дома из бруса, бревна, кирпича, панелей
- Масляный радиатор
- Повышение эффективности теплоотдачи
- Расчет скорости нагрева
- Формула для расчета мощности котла
- 1 Организация серверной комнаты
- Расчет мощности батарей отопления по площади
- Расчет панельных радиаторов
- Зависимость мощности радиаторов от подключения и места расположения
- Пример выполнения расчета
- Факторы, влияющие на потребность в тепле
- Формула расчета тепловой мощности с учетом дополнительных факторов
- Рассмотрим метод вычислений для комнат с высокими потолками
- Ведущая классификация
- Расчет отопления частного дома
Сколько кВт·ч энергии тратится на нагрев воды
Этот калькулятор высчитает сколько денег, электроэнергии и времени тратится на нагрев воды. Вам не потребуется ни формул, ни коэффициентов: просто введите ваши данные и получите ответ.
Для расчета потребленной электроэнергии надо указать температуру холодной и горячей воды, а также её объём (массу). Вы можете указать КПД нагревательного прибора, если он вам известен. Если задать КПД 100%, то расчет покажет только полезную мощность затраченную на нагрев воды. При указании реального КПД расчет выдаст полную мощность потребленную от сети.
Чтобы оценить сколько времени занимает нагрев, укажите мощность электроприбора, которым вы греете воду, в киловаттах (кВт). Мощность часто указана на корпусе прибора, а также в его руководстве по эксплуатации или паспорте.
Кипячение воды в электрочайнике
Обычно я наливаю в чайник воду комнатной температуры 20°C до отметки 1 литр и всегда довожу до кипения (до 100 градусов). Мощность чайника 2 кВт. Простейший расчет показывает, что на кипячение потратится примерно 0,1 кВт ч (киловатт часов) электроэнергии, 3 минуты времени, и, по московским тарифам, пятьдесят копеек денег.
Значит, каждое чаепитие прибавляет пол рубля в счет за электроэнергию, но это значительно меньше цены порции чая или кофе.
Подогрев воды в накопительном водонагревателе
Принимая душ, я каждый раз полностью опустошаю всю горячую воду из накопительного нагревателя, потому как в конце вода становится холодной. Зимой нагреватель греет холодную водопроводную воду от 5 до 45 градусов. Объем бачка 80 литров. При мощности тэнов 2 кВт, свежая вода в бачке будет нагреваться 2 часа, при этом потратится примерно 4 кВт электроэнергии и 20 рублей денег на её оплату. Летом вода греется от 18 до 45.
Значит, зимой каждое принятие душа обходится семейной казне в 20 рублей, а летом — в 15 рублей, если не считать стоимость холодной воды.
Несмотря на широкий сегодняшний ассортимент и функциональность выпускаемых различными производителями электробойлеров, их самодельные аналоги и в наше время не потеряли своей актуальности.
Обусловлено это прежде всего меньшей стоимостью последних, поэтому для реализации нагрева воды, скажем для летнего душа или умывальника на даче многие нередко используют самодельные электроводонагреватели, конструктивно представляющие собой емкость с нагревательным элементом — ТЭНом.
Способ подключения
Не все понимают, что разводка труб системы отопления и правильное подключение влияют на качество и эффективность теплоотдачи. Разберем этот факт подробнее.
Существует 4 способа подключения радиатора:
- Боковое. Этот вариант чаще всего используют в городских квартирах многоэтажных домов. Квартир в мире больше, чем частных домов, поэтому производители используют такой тип подключения как номинальный способ определения теплоотдачи радиаторов. Для его расчета используется коэффициент 1,0.
- Диагональное. Идеальное подключение, потому что теплоноситель проходит по всему прибору, равномерно распределяя тепло по его объему. Обычно этот вид используется, если в радиаторе более 12 секций. При расчете используется повышающий коэффициент 1,1–1,2.
- Нижнее. В этом случае трубы подачи и обратки подсоединяются снизу радиатора. Обычно такой вариант используется при скрытой проводке труб. В этом виде подключения есть один минус — теплопотери 10%.
- Однотрубное. Это, по сути, нижнее подключение. Обычно его используют в системе разводки труб ленинградка. И здесь без теплопотерь не обошлось, правда, они в несколько раз больше — 30–40%.
Способы, как можно увеличить теплоотдачу
Существует несколько способов, позволяющих увеличить теплоотдачу приборов отопления:
- Регулярное проведение влажной уборки с целью очистки поверхности батарей. Чем чище они будут, тем выше уровень их теплоотдачи.
- Не менее важен момент правильного окрашивания радиатора, особенно это касается чугунных приборов. Дело в том, что многослойно нанесенная краска препятствует эффективной теплоотдаче. Перед тем, как приступить к покраске радиатора отопления, следует удалить старый слой. Не менее эффективно применение специальных эмалей, предназначенных для трубопроводов и отопительных приборов, поскольку они имеют низкое сопротивление теплоотдаче.
- Для обеспечения максимальной мощности, необходимо правильно смонтировать эти устройства.
- Среди основных ошибок, допускаемых при монтаже, специалисты отмечают: — наклон батареи;- установку прибора слишком близко к напольному покрытию или к стене; — перекрытие доступа к радиаторам предметами обстановки и установка неподходящих отражающих экранов.
- Для повышения эффективности отопительных батарей не помешает проведение ревизии их внутренней полости. Нередко в процессе подключения батарей отопления к системе образуются заусеницы, из-за которых при эксплуатации образуются засоры, препятствующие свободному передвижению теплоносителя.
- Можно поместить на стену за отопительным прибором теплоотражающий экран, сделанный из фольгированного материала.
Познавательное видео о теплоотдаче радиаторов отопления:
Ход работ: вычисления процента допустимых теплопотерь для загородного дома из бруса, бревна, кирпича, панелей
Прежде чем приступать непосредственно к работам, исполнитель проводит некоторые натурные изыскания на объекте. Помещение обследуется и замеряется, учитываются пожелания и информация от заказчика. Этот процесс предполагает определенные действия:
- Натурное измерение помещений;
- Спецификация их по данным заказчика;
- Изучение обогревательной системы при ее наличии;
- Идеи по усовершенствованию или исправлению погрешности в отоплении (в имеющейся системе);
- Изучение системы подачи горячей воды;
- Разработка идей по ее задействованию для обогрева или уменьшения теплопотери (например, с использование оборудования Valtec (Валтек);
- Расчет теплопотерь и иные, необходимые для разработки плана системы отопления.
После проведения этих этапов, исполнитель предоставляет необходимую техдокументацию. В нее входит поэтажные планы, профили, где отображен каждый отопительный прибор и общее устройство системы, материалы по специфике и типу используемого оборудования.
Масляный радиатор
Один из наиболее популярных бытовых обогревателей. Они имеют мощность от 1,0 до 2,5 кВт и используются в квартирах, офисах, на дачах.
Принцип работы | Внутри герметичного металлического корпуса, наполненного минеральным маслом, находится электрическая спираль. Нагреваясь, она передает свое тепло маслу, а оно в свою очередь — металлическому корпусу, а затем воздуху. Его внешняя поверхность состоит из нескольких секций (ребер) — чем больше их количество, тем обширнее теплоотдача, при равных мощностях. Обогреватель поддерживает в комнате заданную температуру и в случае перегрева автоматически выключается. Как только температура начинает падать — включается. |
Достоинства | Невысокая температура нагрева корпуса (около 60 о С), благодаря чему не «сжигается» кислород пожаробезопасен, бесшумен благодаря термостату и таймеру некоторые модели не требуют отключения, высокая мобильность (наличие колёсиков позволяет легко перемещать их из комнаты в комнату) |
Недостатки | Сравнительно долгий прогрев помещения (однако и дольше сохраняют тепло), температура поверхности радиатора не позволяет свободно дотронуться до него (что крайне опасно при наличии в помещении детей), относительно большие габариты |
Выводы | Масляные радиаторы идеально подходят для обогрева квартир. Бесшумность, экономичность и безопасность здесь очень важны. Одного обогревателя достаточно для обогрева зала или спальни. Масляные радиаторы снабжены колесиками, и их можно легко переносить из комнаты в комнату. На лето масляный радиатор можно просто вынести в сарай или поставить в кладовку. |
Повышение эффективности теплоотдачи
При обогреве радиатором внутреннего воздуха помещения происходит также интенсивный нагрев внешней стены в области за батареей. Это ведет к дополнительным неоправданным потерям тепла.
Предлагается для повышения эффективности теплоотдачи радиатора отгораживать отопительный прибор от наружной стены теплоотражающим экраном.
Рынок предлагает множество современных изоляционных материалов с отражающей тепло фольгированной поверхностью. Фольга защищает согретый батареей теплый воздух от контакта с холодной стеной и направляет его внутрь комнаты.
Для правильной работы границы установленного отражателя должны превышать габариты радиатора и с каждой стороны на 2-3 см выступать. Промежуток между отопительным прибором и поверхностью тепловой защиты следует оставлять величиной 3-5 см.
Для изготовления теплоотражающего экрана можно посоветовать изоспан, пенофол, алюфом. Из приобретенного рулона вырезается прямоугольник необходимых размеров и закрепляется на стене в месте установки радиатора.
Фиксировать экран, отражающий тепло отопительного прибора, на стене лучше всего силиконовым клеем или посредством жидких гвоздей
Рекомендуется отделять лист изоляции от внешней стены небольшой воздушной прослойкой, например, с помощью тонкой пластиковой решетки.
Если отражатель стыкуется из нескольких частей изоляционного материала, места соединений со стороны фольги необходимо проклеивать металлизированной клейкой лентой.
Расчет скорости нагрева
При расчете мощности электронагревательных элементов использованы следующие расчетным данные: масса воды, начальная и конечная (желаемая) температура воды и время, затрачиваемое на нагревание. Мощность ТЭНа P
определяется математическим выражением:P=0,0011m(t k -t н)/T . в котором:m — масса нагреваемой воды,t k иt н — начальная и конечная температура воды,T — затрачиваемое на ее нагревание время. Вычисление мощности нагревательного элемента выполняется данным калькулятором без учета тепловых потерь, связанных с конструктивными особенностями емкости, температуры окружающей среды, состоянием греющей поверхности ТЭНа и пр. Кроме того, следует учесть фактическое напряжение питающей сети, которое может сильно отличаться от номинального значения. Так, при пониженном напряжении, температура рабочей поверхности будет меньше значения, заявленного изготовителем, следовательно, и времени для нагрева потребуется больше. Учитывая удельный вес воды составляет 1 г/см 3. в поле калькулятора “Масса нагреваемой воды” при вводе данных может быть использовано значение ее объема. Результат вычисления (P) может быть значением мощности как одного ТЭНа, так и нескольких параллельно соединенных элементов.
Формула для расчета мощности котла
Во время выполнения для отопительного котла расчетов мощности конечный показатель все равно придется округлить, поскольку у приобретаемой котельной установки обязательно должен присутствовать запас мощности. По этой причине при расчетах мощности необходимо использовать следующую формулу:
W = S*Wуд, где
- S – суммарная площадь здания, которая нуждается в прогреве, определяемая включением всех помещений вне зависимости от их назначения, в кв.м.
- W – мощность котельной установки, кВт.
- Wуд. – среднестатистический показатель удельной мощности, использование подобного параметра позволяет добиться большей точности расчетов за счет корректировки показателей на основе особенностей конкретной климатической зоны, кВт/кв.м.
Этот параметр выведен на основании многолетнего опыта работы различных систем для разных территорий. Показатель, получаемый в результате перемножения площади с указанным параметром, будет соответствовать усреднённому значению мощности. При этом он подлежит обязательному округлению с учетом выше указанных особенностей.
1 Организация серверной комнаты
Серверные помещения оборудуют в зданиях, где функционирует большое количество техники (например, в офисных центрах). В них устанавливают такие приборы, как элементы бесперебойного питания, распределительные пункты, кроссы, патч-панели, коммуникационные стойки и многое другое. Исходя из количества необходимого оборудования рассчитываются размеры серверной комнаты. Минимально допустимой считается площадь 14 кв. м. В некоторых случаях может использоваться несколько таких комнат.
Требования к оборудованию специального помещения перечислены в стандарте TIA 569. Согласно этому документу, высота потолка в серверной должна достигать 2,5 м. Такая величина обусловлена тем, что большинство стоек для крепления аппаратов имеют высоту 2 м. Для обеспечения эффективного отвода тепла расстояние от их верхней точки до потолка должно быть минимум 0,5 м.
Для обустройства серверной следует выбирать комнаты без окон. Иначе через них в летнее время будет попадать большое количество солнечного тепла, негативно влияющего на работу современной техники.
Множество различных установок, собранных в одном месте, имеют внушительный вес. Поэтому для обеспечения безопасности пол должен выдерживать большую нагрузку (минимум 1200 кг на 1 кв. м.). Чтобы оборудование не вышло из строя из-за действия влаги, потолок требуется покрыть слоем гидроизоляционного материала. Температурный режим следует постоянно поддерживать в диапазоне 18−24 градуса, влажность — на уровне 30−50%
В комнате обязательно наличие телекоммуникационной шины, выполняющей роль основного заземлителя. К ней присоединяют заземляющие проводники металлических кабелей, приборов и прочих конструкций. Освещение запитывают от разных распределительных электрощитов, световые приборы размещают на потолке, выключатели для них монтируют на высоте 1,5 м от пола.
Обязательным требованием к серверной является постоянное поддержание чистоты и отсутствие пожароопасных предметов. Доступ в неё должен быть строго ограничен, двери — закрыты на замок, ключи от которого может иметь собственник здания и лицо, ответственное за обслуживание помещения.
Расчет мощности батарей отопления по площади
В основе расчета по площади лежат санитарные нормы и правила, которые указывают на то, что на каждые 10 м² площади должно приходиться 100 ватт тепловой мощности. Применяемый при расчете тепловой коэффициент будет отличаться в зависимости от климатических особенностей местности. Так, для южных районов России он равен 0,7-0,9, для Якутии и Чукотки – 2,0, для Дальнего Востока – 1,6.
Подобный подход к получению необходимой мощности радиаторов имеет погрешности, определяемые рядом факторов, таких как наличие панорамного остекления, расположение квартиры внутри дома и высота потолков.
Пример: площадь комнаты в 12 м² умножаем на 100 Вт и коэффициент района 0,7. Полученный результат – 840 ватт. Исходя из мощности одной секции 180 ватт, потребуется 840/180=4,66 секции, что при округлении дает пять. При расчете тепловой мощности и количества батарей специалисты рекомендуют делать 30% запас.
Расчет панельных радиаторов
Технические характеристики панельных радиаторов PURMO Plan Ventil Compact FCV 22 | |
Температура теплоносителя, не более, град. С | 110 |
Избыточное рабочее давление, не более, МПа (г/кв. см) | 1,0 |
Высота H, мм | 300 |
Длина L, мм | 700, 1200, 1300 |
Номинальная тепловая мощность при Тгр. 75/65/20°C, Вт | 656, 1124, 1312 |
Температурный режим отопительной системы – 95/70/18.
Для определения фактической тепловой мощности системы, для каждого отопительного прибора, установленного в помещениях определённого функционального назначения учитывается поправочный коэффициент К, определяемый как:
K = Tнапор.ф / Tнапор.н
Где: Тнапор.н – номинальный температурный напор принятый заводом изготовителем для определения теплоотдачи отопительного прибора при номинальных условиях;
Тнапор.ф – фактический температурный напор, ºС:
Tнапор.ф = (tвх + tвых) / 2 – tвн.в
Где: tвх, tвых, – температура теплоносителя на входе и выходе из отопительного прибора, tвн.в – проектная температура внутреннего воздуха, ºС;
С учётом значения температуры теплоносителя на входе и выходе из отопительного прибора, рассчитывается значение температурного напора и коэффициента К:
Tнапор.н = (75+65)/2-20 = 50
Tнапор.ф = (95+70)/2-18 = 64,5
К = 64,5/50 = 1,29
Тепловая мощность панельного радиатора при индивидуальной температуре в системе отопления;
Q = QS · К ,
где: QS – номинальная тепловая мощность панельного радиатора;
Панельные радиаторы PURMO Plan Ventil Compac FCV 22:
Q = (QS · К) ·n= (656 · 1,29) ·2 = 1692,48 (Вт) · 0,863 = 1460,61 (Ккал/ч)
Q = (QS · К) ·n= (1124 · 1,29) ·1 = 1449,96 (Вт) · 0,863 = 1251,32 (Ккал/ч)
Q = (QS · К) ·n= (1312 · 1,29) ·2 = 3384,96 (Вт) · 0,863 = 2921,22 (Ккал/ч)
где: n – количество панельных радиаторов марки PURMO Plan Ventil Compact FCV 22, шт.
Посмотреть на энергопаспорт магазина продовольственных товаров
Суммарная тепловая нагрузка панельных радиаторов:
Qр.от.= 1460,61 + 1251,32 + 2921,22 = 5633,15 Ккал/ч
Максимальный часовой расход на отопление в трубопроводах
Кривые для определения теплопередачи 1м вертикальных гладких труб различных диаметров | ||
трубы Ду 20 | tтр. = + 82,5 оC | tв = + 18 оC |
Справочник проектировщика «Внутренние санитарно-технические устройства» (И.Г. Староверов, 1975 г.), стр. 56, рис. 12.2 |
Qпод.тр.Ду20 ´ l1 = 57,31 ´ 0,75 = 42,9825 ккал/ч (0,000043 Гкал/ч)
Qпод.тр.Ду20 = 57,31 ккал/ч – потери тепловой энергии в подающем трубопроводе на один погонный метр;
l1= 0,75 м – длина подающего трубопровода;
Зависимость мощности радиаторов от подключения и места расположения
Кроме всех описанных выше параметров теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.
Потери тепла на радиаторах в зависимости от подключения
Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.
Количество тепла зависит и от установки
Количество тепла зависит и от места установки
Пример выполнения расчета
Поправочные коэффициенты в данном случае будут равны:
- К1 (двухкамерный стеклопакет) = 1,0;
- К2 (стены из бруса) = 1,25;
- К3 (площадь остекления) = 1,1;
- К4 (при -25 °C -1,1, а при 30°C) = 1,16;
- К5 (три наружные стены) = 1,22;
- К6 (сверху теплый чердак) = 0,91;
- К7 (высота помещения) = 1,0.
В результате полная тепловая нагрузка будет равна: В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной: Пример расчета тепловой мощности системы отопления на видео:
Факторы, влияющие на потребность в тепле
Тепловая мощность зависит от площади помещения, климата региона, степени утепления здания
К основным факторам, определяющим потребность в тепловой энергии для помещения, относят:
- полный объем нагреваемых пространств;
- тип и качество утеплительного материала;
- климатическая зона, в которой располагается здание.
От объема помещения зависит количество воздушного пространства, нуждающегося в обогреве. Чем объемнее отапливаемое помещение, тем больше тепла потребуется для поддержания нужного микроклимата. При одинаковой высоте потолков (порядка 2,5 метров) обычно применяется упрощенный расчет, при котором за основу берется площадь комнаты.
О качестве утепления судят по способам теплоизоляции стен, а также по площади и комплекту окон и дверей. Учитывается также вид остекления – простой и тройной стеклопакет различны по тепловым потерям. Влияние климатического фактора сказывается при прочих равных условиях и учитывается как разность температур на улице и в комнате, где установлен котел.
Для прибора (батареи отопления)
Степень теплопроводности металлов – из некоторых изготавливают радиаторы
При рассмотрении факторов, влияющих на мощность нагрева радиаторов отопления, выделяются три основных:
- показатель, соответствующий разнице нагрева теплоносителя и окружающей воздушной среды – с его повышением увеличивается тепловая мощность;
- площадь поверхности, отдающей тепло;
- теплопроводность используемого материала.
В этом случае наблюдается та же линейная зависимость: с увеличением поверхности батареи возрастает и величина тепловой отдачи. По этой причине многие современные отопительные радиаторы дополняются специальными алюминиевыми ребрами, повышающими общую теплоотдачу.
Формула расчета тепловой мощности с учетом дополнительных факторов
Несмотря на введение коэффициента потерь тепла предыдущая формула не способна отразить всевозможные нюансы помещений. Наример теплопотери квартиры расположенной на 5 этаже в центре девятиэтажного здания ниже, чем у угловой квартиры на последнем этаже. Для получения более точных данных рекомендуем воспользоваться формулой:
Q = (100 Вт/м2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000,
Где:
- S – площадь помещения в м2.
-
φ 1 – потери тепла через окна:
- 0,85 – тройной стеклопакет;
- 1 – двойной стеклопакет;
- 1,27 – одинарный стеклопакет (стандартный).
-
φ 2 – утепление стен (теплоизоляция):
- 0,854 – высокое;
- 1 – кладка в два кирпича;
- 1,27 – низкое.
-
φ 3 – соотношение общей площади окон к площади пола помещения в %:
- 1,2 – 50%;
- 1,1 – 40%;
- 1 – 30%;
- 0,9 – 20%;
- 0,8 – 10%.
-
φ 4 – коэффициент умножения в зависимости от температуры внешней среды в минусовых значениях С:
- 1,5 – -35С;
- 1,3 – -25С;
- 1,1 – -20С;
- 0,9 – -15С;
- 0,7 – -10С.
-
φ 5 – сколько стен имеют контакт со внешней средой (выходят на улицу):
- 1,4 -4;
- 1,3 -3;
- 1,2 -2;
- 1,1 -1.
-
φ 6 – теплоизоляция помещения находящегося сверху над расчетным:
- 0,8 – обогреваемое;
- 0,9 – утеплённое, но не отапливаемое;
- 1 — холодный чердак или крыша.
-
φ 7 – высота в метрах:
- 1,2 – 4,5м;
- 1,15 – 4м;
- 1,1 – 3,5м;
- 1,05 – 3м;
- 1 – 2,5м.
Как видите в формуле расчета тепловой мощности обогревательного оборудования учтено значительно больше значений влияющих на теплопотери.
Пример расчета
Вводные данные: гостиная в частном доме, ВхШхД – 4х5х6 м. Дом построен кладкой в два кирпича, на утепленном фундаменте с большим панорамным окном, со стандартным остеклением, занимающим 50% от площади пола. Средняя температура зимой -15С. На втором этаже отапливаемые спальни, две стены выходят на улицу.
Выясняем требуемые значения и коэффициенты:
- S – 30м2.
- φ 1 – 1,27.
- φ 2 – 1.
- φ 3 – 1,2.
- φ 4 – 0,9.
- φ 5 – 1,2.
- φ 6 – 0,8.
- φ 7 – 1,15.
Подставляем значения в формулу:
Q = (100 Вт/м2 х S х φ 1 х φ 2 х φ 3 х φ 4 х φ 5 х φ 6 х φ 7)/1000,
Q = (100 Вт/м2 х 30 х 1,27 х 1 х 1,2 х 0,9 х 1,2 х 0,8 х 1,15)/1000 = 4,543 кВт
Исходя из этого уточненного расчета, получается, что нам нужно организовать отопление на 4,5-5 кВт.
Эта формула предпочтительна для расчета тепловой мощности отопительных систем, причем она подходит для расчета отопления в небольших жилых помещениях и в организации отопления промышленных объектов.
Рассмотрим метод вычислений для комнат с высокими потолками
Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:
24 кв.м х 3 м = 72 куб.м (объем комнаты).
72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).
Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:
2952 Вт / 180 Вт = 16,4
Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.
Путём не сложных вычислений можно с лёгкостью определить нужные вам данные.
Ведущая классификация
Это будет зависеть от типа и качества материала используемого при изготовлении радиаторов. К основным разновидностям причисляют:
- из чугуна;
- из биметалла;
- из алюминия;
- из стали.
Каждый из материалов обладает некоторыми недостатками и рядом особенностей, поэтому для принятия решения понадобится рассмотреть главные показатели более детально.
Изготовленные из стали
Прекрасно функционируют в сочетании с автономным отопительным устройством, которое предназначено для обогрева существенной квадратуры. Выбор стальных радиаторов отопления не считается прекрасным вариантом, так как существенного давления выдержать они не в состоянии. Крайне устойчивы к проявлениям коррозии, легкие и показатели теплоотдачи вполне удовлетворительны. Имея несущественное проходное сечение, забиваются они достаточно редко. А вот рабочим давлением принято считать 7,5-8 кг/см 2, в то время как сопротивляемость возможным гидроударам всего 13 кг/см 2. Теплоотдача секции составляет 150 вт.
Сталь
Изготовленные из биметалла
Они лишены недостатков, которые встречаются у алюминиевых и чугунных изделий. Наличие сердечника из стали является характерной особенностью, что позволило достигнуть колоссальной стойкости давления в 16 – 100 кг/см 2. Теплоотдача биметаллических радиаторов составляет 130 – 200 Вт, что по показателям приближено к алюминиевым. Имеют небольшое сечение, поэтому со временем проблем с загрязнением не наблюдается. К существенным недостаткам можно смело отнести непомерно высокую стоимость изделий.
Биметаллический
Изготовленные из алюминия
Подобные устройства имеют массу преимуществ. Они обладают превосходными внешними характеристиками, к тому же не требуют особого ухода. Достаточно прочны, что позволяет не опасаться гидроударов, как в случае с чугунными изделиями. Рабочим давлением принято считать 12 – 16 кг/см 2, в зависимости от используемой модели. К особенностям также можно отнести проходное сечение, которое приравнивается или меньше диаметра стояков. Это позволяет теплоносителю циркулировать внутри устройства с огромной скоростью, что делает невозможным отложение осадков на поверхности материала. Большинство ошибочно полагают, что слишком маленькое сечение неминуемо приведет к низкому показателю теплоотдачи.
Алюминиевый
Это мнение ошибочно хотя бы потому, что уровень теплоотдачи алюминия гораздо выше чем, например, у чугуна. Сечение компенсируется площадью оребрения. Теплоотдача алюминиевых радиаторов зависит от различных факторов, в том числе и от используемой модели и может составить 137 – 210 Вт. Вопреки приведенным выше характеристикам, не рекомендуется использовать подобный тип оборудования в квартирах, так как изделия не способны выдержать резких температурных изменений и скачков давления внутри системы (во время прогона всех устройств). Материал алюминиевого радиатора очень быстро разрушается и последующему восстановлению не подлежит, как в случае использования другого материала.
Изготовленные из чугуна
Необходимость в регулярном и очень тщательно уходе.Высокий показатель инертности является чуть ли не главным преимуществом чугунных радиаторов отопления. Уровень теплоотдачи так же неплох. Нагреваются подобные изделия не быстро, при этом отдают тепло они также довольно долго. Теплоотдача одной секции чугунного радиатора приравнивается к 80 – 160 Вт. А вот недостатков здесь очень много и главными принято считать следующие:
- Ощутимый вес конструкции.
- Практически полное отсутствие способности к сопротивлению гидроударам (9 кг/см 2).
- Заметная разница между сечением батареи и стояков. Это приводит к замедленной циркуляции теплоносителя и довольно быстрому загрязнению.
Теплоотдача радиаторов отопления в таблице
Расчет отопления частного дома
Обустройство жилья отопительной системой – главная составляющая создания в доме комфортных температурных условий проживания в нем
В обвязку теплового контура входят много элементов, поэтому важно уделить внимание каждому из них. Не менее важно грамотно выполнить расчет отопления частного дома, от которого во многом зависит эффективность работы теплового блока, равно как и его экономичность. А как рассчитать систему отопления по всем правилам, вы узнаете из этой статьи
А как рассчитать систему отопления по всем правилам, вы узнаете из этой статьи
А как рассчитать систему отопления по всем правилам, вы узнаете из этой статьи.
- Из чего складывается нагревательный узел?
- Подбор нагревательного элемента
- Определение мощности котла
- Расчет количества и объема теплообменников
- От чего зависит количество радиаторов
- Формула и пример расчета
- Трубопроводная отопительная система
- Монтаж отопительных приборов