Снеговая нагрузка.нагрузки, действующие на несущую конструкцию скатных крыш
Содержание:
- Снеговая нагрузка скатных кровель
- Заключение
- Определение угла наклона
- Расчетная снеговая нагрузка
- Наполняемость ЗИЛа и КАМАЗа самосвала: сколько кубов песка в кузове
- Расчет снеговых нагрузок
- На что влияет этот показатель?
- Сколько весит куб снега?
- Зависимость нагрузок от угла наклона крыши
- Расчет деревянных элементов покрытия: обрешетки и стропильной ноги
Снеговая нагрузка скатных кровель
c http-equiv=»Content-Type» content=»text/html;charset=UTF-8″>lass=»article_show_context_1″>
Несмотря на то, что скатные конструкции кровли имеют определенные преимущества перед плоскими вариантами, в любом случае выполняется расчет давления на несущие элементы крыши в результате возникновения снеговой нагрузки. Цель расчета — определить ориентировочный средний размер стропил в зависимости от общей массы кровельного пирога, снеговой и ветровой нагрузки.
Методика расчета
Стандартный подход в определении величины нагрузки площади ската требует выполнения следующих расчетов:
Определяется максимальная высота снегового заряда на крыше и его вес на единицу площади крыши;
По рекомендациям и нормативам СНиПа определяют коэффициент уменьшения давления на скатной поверхности в сравнении с плоской крышей, при этом качество и шероховатость кровельного материала в расчет не принимают, используется только угол наклона кровли;
Перемножая массу на коэффициент уменьшения и площадь поверхности, получают давление от снеговой массы, передающееся на стены и фундамент
Эту величину используют только для оценки нагрузки, а не для точных расчетов.
Важно! При этом в стандартном способе расчета принимается, что снеговой покров распределен равномерно по всей плоскости крыши.
Как и для плоских вариантов крыш, нагрузку от снеговой массы на скатных конструкциях можно посчитать с помощью программы – калькулятора, в ней содержится много поправочных коэффициентов, поэтому результат получается несколько точнее грубой оценки в одно арифметическое действие.
Как ведет себя снежный покров на различных участках
Зачастую считают, что давление снега на скат кровли не зависит от высоты покрова. Это действительно так, но только для свежевыпавшего снега и только для абсолютно герметичных кровель с углом наклона не менее 25%. Во всех остальных случаях неравномерное давление снега начинает сказываться уже через сутки.
Снег в любом случае начинает перемещаться вниз и таять. Большая часть массы уйдет с коньковой поверхности вниз, ближе к свесам. Часть воды затекает в стыки между листами кровли и может намерзать или улавливаться теплоизоляцией. Чем теплее кровля, тем крепче держится снег на ее поверхности. В некоторых случаях используют обогревающие элементы, позволяющие растопить замерзшую воду в самых опасных для крыши местах- центральной части и на свесах.
Снеговой заряд на крыше начинает перераспределяться вдоль ската, в первую очередь из-за процесса уплотнения, и во вторую — из-за неравномерной деформации стропильной системы. На рисунке приведена схема прогиба скатной кровли, полученная расчетным способом моделирования на компьютере.
Центральная часть стропил, самая гибкая и неустойчивая, прогибается, и соответственно, в каждой точке кровли под снеговой нагрузкой меняется угол наклона ската, а значит, на участках ближе к свесам увеличивается давление на стропильный каркас.
Особенности распределения снеговой нагрузки поверхности крыши
Часто сбивают с толку данные о количестве и мощности снегового покрова в различных климатических поясах. Эти сведения имеют очень среднее значение, в одних условиях из-за наветренной позиции крыши снега меньше, а с подветренной – больше. Кроме того, на самой крыше имеется масса конструктивных элементов и участков, где снеговая нагрузка значительно выше средней величины.Например, углы ендова, слуховые и мансардные окна.
В этих местах при неудачном направлении ветра может образоваться сугроб в несколько раз выше среднего значения. Самым неприятным явлением в перемещении снеговой массы является скопление на свесах огромных зарядов снега, перемешанных с талой водой. Давление такой массы может на порядок превышать среднюю характеристику снеговой нагрузки из справочных данных.
Заключение
На процесс скопления снега может влиять даже материал кровли. Лучше всего показала себя кровля из классической керамической черепицы. Неплохо сбрасывают снег крыши, крытые металлическим оцинкованным покрытием, металлочерепицей, хуже всего борется со снегом ондулин и битумная черепица, рулонная кровля. Поэтому характер покрытия необходимо также учитывать при расчете будущей снеговой нагрузки.
( Пока оценок нет )
Определение угла наклона
Учитывая изложенные выше факторы – снеговую и ветровую нагрузку, выбранный тип материала – и зная примерную конструкцию здания, можно определить угол крыши. Более детально правила расчета изложены в статье. Далее на основании этой информации рассчитывается сборная нагрузка (от собственного веса и внешних нагрузок) на стропильную конструкцию. По результатам расчета определяется шаг стропил и их сечение.
Пример расчета нагрузки на стропила
Строительство планируется в Иркутске, дом с высотой 5,6 м будет располагаться в низине, явно выраженных преобладающих ветров нет. Данный район относится к снеговому району 2 и ветровому 3. Соответственно, снеговая нагрузка составляет 120 кг/м.кв., а ветровая 30 кг/м.кв. Суммарная нагрузка 150 кг/м.кв.
Материал кровли – металлочерепица с весом 4 кг/м.кв. Для нее допустим уклон от 12 градусов, но большинство производителей рекомендует для односкатной крыши 20…30 градусов. Если принять 20 градусов, необходимо обеспечить качественную гидроизоляцию, что добавляет к весу квадратного метра покрытия 2…5,5 кг/м.кв. Поскольку верхняя часть дома планируется как жилая, необходимо также утепление. В качестве термоизоляции принимаем базальтовую вату плюс подшивку изнутри гипсокартоном. Примерный вес квадратного метра такого утепления – около 4,5…5 кг.
Необходимо также принять во внимание вес деревянной обрешетки под металлочерепицу, это еще не менее 10…12 кг, и вес самих стропил. Таким образом, суммарная нагрузка на квадратный вес крыши от собственной массы и внешних нагрузок составит (без учета веса стропил, поскольку пока неизвестно их сечение и шаг): 4+5+5+12+150=176 кг/м.кв
Таким образом, суммарная нагрузка на квадратный вес крыши от собственной массы и внешних нагрузок составит (без учета веса стропил, поскольку пока неизвестно их сечение и шаг): 4+5+5+12+150=176 кг/м.кв.
Определение шага стропил и их сечения
Для вычисления этих данных есть расчетные формулы. Однако при отсутствии инженерного образования и желания высчитывать коэффициенты можно использовать табличные значения.
Для выяснения высоты балки (стропила) можно опираться на известный уже угол наклона и расчетную длину, которая определяется по тригонометрическим формулам.
Разница между высотой одной и второй опорных стен крыши для пролета, например, 4 м и угла наклона 20 градусов составит:
L_bc=L_cd×tgA=6×0,364=2,18 м
Длина стропильной ноги (стропила):
L_c=L_bc÷sinA=2,18÷sin20=6,4
С учетом вылета в обе стороны не менее 500 мм (обязательный свес крыши) принимаем длину стропила 7,4 м.
Для двухопорных стропил принята таблица
Пролеты свыше 6 м принято опирать на три точки – две несущие стены и шпренгельную ферму, например, или с опорой на лежень. Пролеты 4,5 м применимы в мансардах, террасах, банях, верандах, а также различных пристройках. В жилых постройках, как правило, расстояние между опорами равно или превышает 6 м.
Соответственно с учетом длины стропила выбирается сечение балки и шаг между ними.
Следует учитывать: под длиной стропила в данном случае понимается расстояние между точками опоры!
То есть в приведенном примере – длина всей стропильной ноги 7,5 м и пролет 6 м допустимо использование опирания на несущие стены (через мауэрлат) и подстропильную ногу. Тогда сечение при шаге 140 см следует принимать 100х200 мм, а при шаге 90см допустимы 75х200 мм. Желательно все же увеличивать сечение балки на 10…15% для получения необходимого запаса прочности.
Проверить нагрузочную способность крыши, правильность выбранного угла с выбранными параметрами можно в одном из онлайн-калькуляторов. Там же можно получить данные о том, сколько материалов потребуется для строительства такой крыши.
Как видно из приведенного скриншота с упрощенным чертежом здания, пункты «Расчет стропил», «Расчет обрешетки», «Снеговая нагрузка» раскрывающиеся, в них необходимо подставить выбранные данные.
Результат расчета показан ниже.
Как видно из результата, предлагается при данной нагрузке, кровельном материале, размерах и шаге стропил выбрать сечение балок равным не 75х200 мм, как предлагается в нормативах, а 70х230 мм. Однако это минимальное значение, к тому же такое сечение не является стандартным. Поэтому – с учетом запаса на прочность – лучше отдать предпочтение сечению 100х200 мм.
Важно: помимо обычных стропил (балок) можно использовать треугольные фермы. Это значительно увеличит нагрузочную способность конструкции, но подобные элементы требуют профессионального расчета.
Расчетная снеговая нагрузка
Нормативное значение только основа для расчета реально возможного веса снега. Просто использовать нормативное значение для расчета прочности нельзя, так как:
- скаты крыши могут быть наклонными, снег будет разложен на большей площади;
- ветра, сдувающие снег с кровли, в каждой местности свои;
- окружающие строения изменяют влияние ветров;
- теплопроводность крыши может привести к ускоренному таянию и снижению веса.
Для проектирования крыши с необходимой и достаточной надежной конструкцией следует учесть все факторы, влияющие на реальную ситуацию.
Формула расчета
Обязательная для применения проектировщиками формула вычисления снеговой нагрузки дана в СП 20.13330.2016 и выглядит следующим образом: S 0 = c b c t µ S g.
При расчете нормативная нагрузка S g умножается на три коэффициента:
- µ – коэффициент, учитывающий угол наклона ската крыши по отношению к горизонтальной поверхности.
- c t – термический коэффициент. Зависит от интенсивности выделения тепла через кровлю.
- c b – ветровой коэффициент, учитывающий снос снега ветром.
Присутствие в формуле коэффициентов определяет зависимость результата от некоторых условий.
Определение коэффициентов
Рассмотрим значения коэффициентов применительно к зданиям с габаритными разменами менее 100 метров и без сложных кровельных форм. Для крупногабаритных зданий или при ломаных рельефах кровли применяются более сложные расчеты.
Зависимость величины снежного давления на квадратный метр от угла наклона ската крыши объясняется тем, что:
- На плоских или слабонаклоненных кровлях снег не сползает. Коэффициент µ равен 1,0 при наклоне ската до 25°.
- Расположение кровли под углом к горизонтальной поверхности приводит к увеличению площади кровли, на которую выпадает норма снега для горизонтального квадрата. Коэффициент µ равен 0,7 на углах 25° – 60°.
- На крутых поверхностях осадки не задерживаются. Коэффициент µ равен 0, если наклон более 60° (нагрузка отсутствует).
Введение в формулу термического коэффициента c t позволяет учесть интенсивность таяния снега от выделения тепла через кровлю. Как правило, кровельный пирог здания проектируют с минимальными потерями тепла в целях экономии, а коэффициент c t при расчетах принимают равным 1,0. Для применения пониженного значения коэффициента 0,8 необходимо, чтобы на здании было неутепленное покрытие с повышенным тепловыделением с наклоном кровли более чем 3° и наличием действенной системы отвода талых вод.
Ветер сносит снег с крыш, снижая давящий на конструкцию вес. Ветровой коэффициент c b можно понизить с 1,0 до 0,85, но только в том случае, если выполняются условия:
- Есть постоянные ветра со скоростью от 4 м/с и выше.
- Средняя зимняя температура воздуха ниже 5С.
- Угол ската кровли от 12° до 20°.
Рассчитанное значение перед применением в проектных решениях умножают на коэффициент надежности γ f = 1,4, обеспечивая компенсацию теряющейся со временем прочности материалов конструкций.
Пример расчета нагрузки
Расчет снеговой нагрузки на кровлю проведем для здания, которое проектируется для строительства в Хабаровске. По карте определяем категорию района – II, по категории узнаем максимальное нормативное значение – до 120 кг/м 2 . Здание проектируется с двускатной крышей под углом 35 ° к поверхности. Значит, коэффициент µ равен 0,7.
Предполагается наличие в здании мансарды и применение эффективных теплоизолирующих материалов кровельного пирога. Коэффициент c t равен 1,0.
Здание будет построено в городе, этажность не превышает окружающие строения, расположенные на расстоянии двух высот здания. Коэффициент c b следует принять равным 1,0.
Таким образом, расчетное значение равно: S 0 = c b c t µ S g =1,0*1,0*0,7*120 =94 кг/м2
Для расчета прочности, и не только конструкции крыши, но и фундамента, несущих элементов строения, применяем коэффициент надежности 1,4, получив для проектных вычислений значение 131,6 кг/м2.
Наполняемость ЗИЛа и КАМАЗа самосвала: сколько кубов песка в кузове
Несмотря на большой тоннаж КАМАЗа, сколько кубов песка в кузове автомобиля по-прежнему хотят знать все закупщики, поскольку именно эта мера веса является общепринятым значением, используемым во всех вычислениях.
На КАМАЗ обычно приходится 12 кубов песка. Сколько ЗИЛ в своем кузове вмещает, также является полезным значением, поскольку многие поставщики осуществляют доставку строительных материалов и в менее крупных размерах. В данном случае вместительность составляет 3 м³. МАЗ используется для доставки 6 м³.
Кузов КАМАЗа может вместить до 18,5 тонн песка.
Очень важно выяснить заранее, заказывая песок, сколько стоит куб сыпучего материала, необходимого вам, и сколько в нем содержится кг. Средняя цена песка речного составляет 8000 руб./м
куб., карьерного – 500 руб./м. куб. Сколько стоит песок с доставкой – зависит от поставщика, объемов песка и расстояния. Средние расценки на услугу в рамках одного города и области составляют 2000-3000 руб
Средняя цена песка речного составляет 8000 руб./м. куб., карьерного – 500 руб./м. куб. Сколько стоит песок с доставкой – зависит от поставщика, объемов песка и расстояния. Средние расценки на услугу в рамках одного города и области составляют 2000-3000 руб.
Расчет снеговых нагрузок
Снеговые нагрузки принимаются в соответствии с СП 20.13330.2011.
Коэффициент надежности по снеговой нагрузке γf следует принимать равным 1,4.
Рассчитать снеговые нагрузки можно используя различные программы или воспользоваться этим файлом:
СКАЧАТЬ ФАЙЛ НА ЯНДЕКС.ДИСК
СКАЧАТЬ ФАЙЛ НА GOOGLE.ДИСК
Для определения снеговых нагрузок потребуются следующие исходные данные:
1. Снеговой район строительства.
Снеговые районы принимаются по карте 1 (приложения Ж). Зная снеговой район, определяем вес снегового покрова Sg, кПа. Принимается в зависимости от снегового района по таблице 10.1
Снеговые районы (принимаются по карте 1 приложения Ж) | I | II | III | IV | V | VI | VII | VIII |
Sg , кПа — вес снегового покрова на 1 м2 горизонтальной поверхности земли, принимаемый в зависимости от снегового района | 0,8 | 1,2 | 1,8 | 2,4 | 3,2 | 4,0 | 4,8 | 5,6 |
2. Тип местности.
Определяем тип местности. Он бывает трех типов:
А — открытые побережья морей, озер и водохранилищ, сельские местности, в том числе с постройками высотой менее 10 м, пустыни, степи, лесостепи, тундра; | |
В — городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м; | |
С — городские районы с плотной застройкой зданиями высотой более 25 м. |
Эти данные необходимы для расчета коэффициента Сe, который учитывает снос снега.
3. Тип схемы.
Тип схемы выбираем в соответствии с приложением Г (СП 20.13330.2011). Существуют следующие типы схем:
Г.1 Здания с односкатными и двускатными покрытиями;
Г.2 Здания со сводчатыми и близкими к ним по очертанию покрытиями;
Г.3 Здания с продольными фонарями;
Г.4 Шедовые покрытия;
Г.5 Двух- и многопролетные здания с двускатными покрытиями;
Г.6 Двух- и многопролетные здания со сводчатыми и близкими к ним по очертанию покрытиями;
Г.7 Двух- и многопролетные здания с двускатными и сводчатыми покрытиями с продольным фонарем;
Г.8 Здания с перепадом высоты;
Г.9 Здания с двумя перепадами высоты;
Г.10 Покрытие с парапетами;
Г.11 Участки покрытий, примыкающие к возвышающимся над кровлей вентиляционным шахтам и другим надстройкам;
Г.12 Висячие покрытия цилиндрической формы;
Г.13 Здания с купольными круговыми и близкими к ним по очертанию покрытиями;
Г.14 Здания с коническими круговыми покрытиями.
4. Средняя скорость ветра.
Средняя скорость ветра V за три наиболее холодных месяца принимается по карте 2 обязательного приложения Ж. Этот параметр необходим для выбора метода расчета коэффициента Сe, который учитывает снос снега.
5. Ширина покрытия
Ширина покрытия b принимается по схеме крыши, но не более 100 м. Этот параметр необходим для выбора метода расчета коэффициента Сe, который учитывает снос снега.
6. Высота крыши над землей.
Высота крыши над землей Ze. Этот параметр необходим для выбора метода расчета коэффициента Сe, который учитывает снос снега.
9. Средняя температура января.
Средняя температура января определяется по карте 5 прил. Ж. Параметр влияет на снижение снеговой нагрузки по пункту 10.9.
10. Уточнения.
- Является ли покрытие здания, защищенным от прямого воздействия ветра соседними более высокими зданиями, удаленными менее чем на 10h1, где h1 — разность высот соседнего и проектируемого зданий (Отвечать да/нет)
- Рассматривается ли в данном случае участок покрытий длиной b, b1 и b2, у перепадов высот зданий и парапетов (см. схемы Г.8 — Г.11 приложения Г).
- Проектируется здание с неутепленным покрытием с повышенными тепловыделениями при уклонах кровли свыше 3 % и обеспечении надлежащего отвода талой воды.
На что влияет этот показатель?
Обывателю кажется, что снег весит совсем мало и не оказывает сильного давления на поверхность крыши. Однако, накапливающая без регулярной расчистки снежная шапка может увеличивать нагрузку на каркас на 100-300 кг/м2. Конечно, часть снега покидает кровлю естественным путем, сдувается снегом, но остальные 95% массы остаются на скате, из-за чего возникают следующие процессы:
- В зимы, когда оттепели чередуются с резкими заморозками, снег на поверхности крыши частично трансформируется в лед, частично намокает, в результате чего вес снежной шапки увеличивается в 2-3 раза, а очистить ее, не портя кровельное покрытие, становится невозможно.
- Если вы выбрали сложную кровлю, которая имеет несколько сопряженных скатов, учитывайте, что снег активнее накапливается в местах примыкания, ендовах и других архитектурных элементах, из-за чего снеговая нагрузка распределяется неравномерно.
- Снег, стихийно соскальзывающий от конька крыши к кровельному свесу представляет серьезную опасность для здоровья людей, поэтому кровлю оборудую снегозадержателями. В свою очередь задержка снега на свесах увеличивает нагрузку на концы стропильных ног.
- Неорганизованный сход снега приводит к срыванию элементов водосточной системы.
Вес кровли
Сколько весит куб снега?
Результат веса, зависит от плотности снега.
А у снега плотность колеблется примерно от 0.05г/см3 до 0,75 г/см3, это повторяю примерно!
Так что по моим подсчетам, это получается от 50кг до 750кг. Зависит на сколько снег мокрый.
Чтобы куб снега весил 700 килограммов, надо его долго и хорошо сбивать. В этом случае, как несложно рассчитать, на 70 процентов снег будет состоять из воды. А для кубометра лёгкого свежевыпавшего снега (не мокрого) нормальная масса составит около 100 — 150 килограммов.
Один кубический метр снега может иметь различную массу, все зависит от агрегатного состояния снега. Например, масса 1 кубического метра:
Зависимость нагрузок от угла наклона крыши
Угол наклона крыши определяет площадь и мощность контакта кровли с ветром и снегом. При этом, снеговая масса имеет вертикально направленный вектор силы, а ветровое давление, вне зависимости от направления — горизонтальный.
Поэтому, принимая угол наклона более крутым, можно снизить давление снежных масс, а иногда и полностью исключить возникновение скоплений снега, но, при этом, увеличивается «парусность» крыши, ветровые напряжения возрастают.
ВАЖНО!
Это обстоятельство вынуждает искать «золотую середину», то есть — оптимальный угол наклона кровли, максимально снижающий снеговое давление и, при этом, создающий как можно меньшее препятствие для ветра.
Очевидно, что для снижения ветровых нагрузок идеальной была бы плоская кровля, тогда как именно она не позволит скатываться массам снега и поспособствует образованию больших сугробов, при таянии способных промочить всю постройку. Выходом из ситуации является выбор такого угла наклона, при котором максимально удовлетворяются требования как по снеговой, так и по ветровой нагрузкам, а они в разных регионах имеют индивидуальные значения.
Зависимость нагрузки от угла крыши
Расчет деревянных элементов покрытия: обрешетки и стропильной ноги
1. Расчет несущих элементов покрытия
Стропильные ноги рассчитывают как свободно лежащие балки на двух опорах с наклонной осью. Нагрузка на стропильную ногу собирается с грузовой площади, ширина которой равна расстоянию между стропильными ногами. Расчетная временная нагрузка q должна быть расположена на две составляющие: нормальную к оси стропильной ноги и параллельно к этой оси.
2.1.1. Расчет обрешетки
Принимаем обрешетку из досок сечением 50´50 мм (r = 5,0 кН/м), уложенных с шагом 250 мм. Древесина — сосна. Шаг стропил 0,9 м. Уклон кровли 35 0 .
Расчет обрешетки под кровлю ведется по двум вариантам загружения:
а) Собственный вес кровли и снег (расчет на прочность и прогиб).
б) Собственный вес кровли и сосредоточенный груз.
1.Принимаем бруски 2-го сорта с расчетным сопротивлением Ru=13 МПа и модулем упругости Е=1´10 4 МПа.
2.Условия эксплуатации Б2 (в нормальной зоне), mв=1; mн=1,2 для монтажной нагрузки при изгибе.
4.Плотность древесины r=500 кг/м 3 .
5.Коэффициент надежности по нагрузке от веса оцинкованной стали gf=1,05; от веса брусков gf=1,1.
6.Нормативный вес снегового покрова на 1м 2 горизонтальной проекции поверхности земли S=2400 Н/м 2 .
Расчетная схема обрешетки
Сбор нагрузки на 1м.п. обрешетки, кН/м
где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной
поверхности земли, принимаемое по табл. 4 , для IV снегового рай-
m — коэффициент перехода от веса снегового покрова земли к
снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .
При загружении балки равномерно распределенной нагрузкой от собственного веса и снега наибольший изгибающий момент равен:
При углах наклона кровли a³10° учитывают, что собственный вес кровли и обрешетки равномерно распределен по поверхности (скату) крыши, а снег — по ее горизонтальной проекции :
Mx = M cos a = 0.076 cos 29 0 = 0.066 кН´м
My= M sin a = 0.076 sin 29 0 = 0.036 кН´м
Прочность брусков обрешетки проверяют с учетом косого изгиба по формуле:
где Mx и My — составляющие расчетного изгибающего момента относительно главных осей X и Y.
Ry=13 МПа — расчетное сопротивление древесины изгибу.
gn=0,95 — коэффициент надежности по назначению.
Момент инерции бруска определяем по формуле:
Прогиб в плоскости, перпендикулярной скату:
Прогиб в плоскости, параллельной скату:
где Е=10 10 Па — модуль упругости древесины вдоль волокон.
Проверка прогиба:
где
При загружении балки собственным весом и сосредоточенным грузом наибольший момент в пролете равен:
Проверка прочности нормальных сечений:
где Ry=13 МПа — расчетное сопротивление древесины изгибу.
gn=0,95 — коэффициент надежности по назначению.
Условия по первому и второму сочетаниям выполняются, следовательно принимаем обрешетку сечением b´h=0,05´0,05 с шагом 250 мм.
2.1.2. Расчет стропильных ног
Рассчитаем наслонные стропила из брусьев с однорядным расположением промежуточных опор под кровлю из оцинк. кр. железо. Основанием кровли служит обрешетка из брусков сечением 50
=0,25 м
=1,0 м
Район строительства – г. Вологда.
Расчетная схема стропильной ноги
Бруски обрешетки размещены по стропильным ногам, которые нижними
концами опираются на мауэрлаты (100
Производим сбор нагрузок на 1 м 2 наклонной поверхности покрытия, данные заносим в таблицу 2.2.
Таблица 2.2Сбор нагрузки на 1м.п. стропильной ноги, кН/м
где S — нормативное значение веса снегового покрова на 1 м 2 горизонтальной поверхности земли, принимаемое по табл. СНиП 4 , для IV снегового района S = 2,4 кПа;
m — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый по п. 5.3 – 5.6 .
Производим статический расчет стропильной ноги как двухпролетной балки, нагруженной равномерно распределенной нагрузкой. Опасным сечением стропильной ноги является сечение на средней опоре.
Изгибающий момент в этом сечении:
Вертикальное давление в точке С, равное правой опорной реакции двухпролетной балки составляет:
При симметричной нагрузке обоих скатов вертикальное давление в точке С удваивается:
Раскладывая это давление по направлению стропильных ног, находим сжимающее усилие в верхней части стропильной ноги:
Растягивающее усилие в ригеле равно горизонтальной проекции усилия N.
Проверяем сечение стропильной ноги.
Из условия прочности при изгибе определяем требуемый момент инерции, вводя коэффициент 1,3 для возможности восприятия сечением продольной силы и момента.
Сечение Æ16см удовлетворяет требованиям. Wx=409,6 см 3 , Jx=3276,8 см 4 . Производим проверку сечения на сжатие с изгибом: