Калькулятор воздуховодов
Содержание:
Расчет систем вентиляции
21 июня 2017 года
Производительность по воздуху
Расчет системы вентиляции начинается с определения производительности по воздуху (воздухообмена), измеряемой в кубометрах в час. Для расчетов нам потребуется план объекта, где указаны наименования (назначения) и площади всех помещений.
Подавать свежий воздух требуется только в те помещения, где люди могут находиться длительное время: спальни, гостиные, кабинеты и т. п. В коридоры воздух не подается, а из кухни и санузлов удаляется через вытяжные каналы. Таким образом, схема движения воздушных потоков будет выглядеть следующим образом: свежий воздух подается в жилые помещения, оттуда он (уже частично загрязненный) попадает в коридор, из коридора — в санузлы и на кухню, откуда удаляется через вытяжную вентиляцию, унося с собой неприятные запахи и загрязнители. Такая схема движения воздуха обеспечивает воздушный подпор «грязных» помещений, исключая возможность распространения неприятных запахов по квартире или коттеджу.
Для каждого жилого помещения определяется количество подаваемого воздуха. Расчет обычно ведется в соответствии со СНиП 41-01-2003 и МГСН 3.01.01. Поскольку СНиП задает более жесткие требования, то в расчетах мы будем ориентироваться на этот документ. В нем говорится, что для жилых помещений без естественного проветривания (то есть там, где окна не открывают) расход воздуха должен составлять не менее 60 м³/ч на человека. Для спален иногда используют меньшее значение — 30 м³/ч на человека, поскольку в состоянии сна человек потребляет меньше кислорода (это допустимо по МГСН, а также по СНиП для помещений с естественным проветриванием). При расчете учитываются только люди, находящиеся в помещении длительное время. Например, если у вас в гостиной пару раз в году собирается большая компания, то увеличивать производительность вентиляции из-за них не нужно. Если же вы хотите, чтобы гости чувствовали себя комфортно, можно установить VAV-систему, которая позволяет регулировать расход воздуха раздельно в каждом помещении. С такой системой вы сможете увеличить воздухообмен в гостиной за счет его снижения в спальне и других помещениях.
После расчета воздухообмена по людям нам нужно рассчитать воздухообмен по кратности (этот параметр показывает, сколько раз в течение одного часа в помещении происходит полная смена воздуха). Чтобы воздух в помещении не застаивался, нужно обеспечить хотя бы однократный воздухообмен.
Таким образом, для определения требуемого расхода воздуха нам нужно рассчитать два значения воздухообмена: по количеству людейи по кратности и, после чего выбрать большее из этих двух значений:
- Расчет воздухообмена по количеству людей: L = N * Lnorm, где
L — требуемая производительность приточной вентиляции, м³/ч;
N — количество людей;
Lnorm — норма расхода воздуха на одного человека:- в состоянии покоя (сна) — 30 м³/ч;
- типовое значение (по СНиП) — 60 м³/ч;
- Расчет воздухообмена по кратности: L = n * S * H, где
L — требуемая производительность приточной вентиляции, м³/ч;
n — нормируемая кратность воздухообмена:
для жилых помещений – от 1 до 2, для офисов – от 2 до 3;
S — площадь помещения, м²;
H — высота помещения, м;
Рассчитав необходимый воздухообмен для каждого обслуживаемого помещения, и сложив полученные значения, мы узнаем общую производительность системы вентиляции. Для справки типовые значения производительности вентиляционных систем:
- Для отдельных комнат и квартир — от 100 до 500 м³/ч;
- Для коттеджей — от 500 до 2000 м³/ч;
- Для офисов — от 1000 до 10000 м³/ч.
Кратность воздухообмена
Этот критерий чаще всего используется для упрощенного расчета системы вентиляции. Под термином «кратность воздухообмена» (в английской терминологии air exchange rate) понимают обмен воздушных масс, выражающихся количеством за час. Причем в зависимости от способа эксплуатации помещения учитывается либо число обменов для помещения в целом, либо кратность с учетом площади (объема). Ниже приведена таблица с нормативными данными для помещений частного дома или общественного здания. При этом подразумевается, что приток воздуха идет естественным путем, а кратность считается для вытяжной вентиляции. Расчетная температура в холодный период указывается для того, чтобы при вычислениях компенсировать излишнюю сухость воздуха за счет действия отопительных приборов.
Таблица 1. Кратность воздухообмена по площади или назначению помещений.
При использовании таблицы важно обратить внимание: кратность указывается в расчете на площадь помещения, а в нашем онлайн-калькуляторе расчет ведется для объема. При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже
При этом пользователь теряется – какое значение кратности применить в калькуляторе вентиляции, если максимальное значение не соответствует норме для жилых помещений? Здесь придется делать поправку на пересчет кратности для объема или воспользоваться ориентировочными цифрами (СНиП 2.08.01-89) из таблицы ниже.
Таблица 2. Кратность воздухообмена для помещений общего или специального назначения.
Применяя показатель, соответствующий жилым комнатам или спальням, равный единице, получаем требуемую производительность вентиляционной системы (м.куб./час).
Основой расчета вентиляции онлайн является формула
здесь V — объем комнаты (произведение площади на высоту), м.куб.;
Kp — кратность воздухообмена согласно санитарно-гигиеническим нормам, 1/ч.
Для жилой комнаты с площадью 20 м.кв. и высотой 2,5 м требуемая мощность вентиляции составит
L = (20 х 2,5) х 1 =50 м.куб.
При использовании данных первой таблицы расчет ведется без учета высоты помещения, то есть
здесь S — площадь помещения, м.кв.;
Kp — кратность воздухообмена согласно нормам, 1/ч.
Для тех же размеров комнаты (20 м.кв.) необходимый объем воздуха в час
L = 20 х 3 = 60 м.куб.
Данный метод вычислений дает более высокие требования к системе вентиляции, поэтому предпочтительным считается предыдущий вариант вычислений. При указании в таблице объема воздуха на помещение именно эти цифры используют для дальнейшего подбора компонентов вентиляционной системы.
Способы снижения влажности в помещении бассейна
Снижение влажности воздуха может проводиться двумя методами:
- конденсация;
- ассимиляция.
Конденсация влаги в бассейне
Воздух прогоняется через осушитель, где его температура достигает точки росы. Влага конденсируется, после чего воздух нагревается до нужной температуры и возвращается в помещение.
Такие установки хороши для вентиляции бассейна в коттедже, где нельзя реализовать систему приток-выдув. Конструкция снабжена гигростатом, который запускает компрессор при достижении влажности определенных показаний. Как только влажность опускается, гигростат останавливает работу компрессора. Вентилятор при этом может продолжать вращение.
Осушители конденсационного типа бывают:
Настенными, которые навешиваются на стены. Их можно установить в помещении с готовой отделкой;
Настенными скрытыми. Вся аппаратура скрыта в прилегающей комнате, в помещение бассейна выходит лишь заборная решетка. Планировать такую систему вентиляции бассейна в частном доме необходимо на этапе строительства;
Стационарными. Это мощные установки, требующие специального помещения. Их можно включить в систему приточно-вытяжной вентиляции для бассейна спортивного комплекса. Стационарный осушитель допускает подмес 1\5 объема воздуха. Приток и выдув воздуха обеспечиваются системой воздушных каналов. Оснастив систему канальным нагревателем, получаем полноценную вентиляцию.
Ассимиляция влаги в бассейне
По этому принципу работают приточно-вытяжные системы, используя свойство воздуха вбирать пары воды. При приблизительных подсчетах закладывается 5-кратный обмен воздуха в час.
Зачастую в умеренных широтах для поддержания необходимого микроклимата в помещении маленького частного бассейна достаточно только вентиляции. Но при расчете вентиляции бассейнов спортивных или развлекательных комплексов без осушителя не обойтись. Особенно, если они расположены в местах с жарким климатом.
Второй значительный недостаток – приточный воздух необходимо нагревать. Особенно заметно это в холодное время года, когда на обогрев затрачивается максимум электроэнергии.
Комбинированный метод осушения бассейна
Оптимальный вид установки осушения и вентиляции для бассейнов интенсивного посещения и большой площади. Специалисты рекомендуют использовать и осушитель, и принудительную вентиляцию. Системы могут быть независимыми, никак не связанными или составлять общую систему поддержания микроклимата.
Это дорогостоящее оборудование, оправдывающее себя лишь в бассейнах площадью не менее 50 кв. метров.
Расчет воздуховодов
Расчет воздуховодов или проектирование систем вентиляции
В создании оптимального микроклимата помещений наиболее важную роль играет вентиляция. Именно она в значительной степени обеспечивает уют и гарантирует здоровье находящихся в помещении людей. Созданная система вентиляции позволяет избавиться от множества проблем, возникающих в закрытом помещении: от загрязнения воздуха парами, вредными газами, пылью органического и неорганического происхождения, избыточным теплом. Однако предпосылки хорошей работы вентиляции и качественного воздухообмена закладываются задолго до сдачи объекта в эксплуатацию, а точнее, на стадии создания проекта вентиляции. Производительность систем вентиляции зависит от размеров воздуховодов, мощности вентиляторов, скорости движения воздуха и других параметров будущей магистрали. Для проектирования системы вентиляции необходимо осуществить большое количество инженерных расчетов, которые учтут не только площадь помещения, высоту его перекрытий, но и множество других нюансов.
Расчет площади сечения воздуховодов
После того, как вы определили производительность вентиляции, можно переходить к расчету размеров (площади сечения) воздуховодов.
Расчет площади воздуховодов определяется по данным о необходимом потоке, подаваемом в помещение и по максимально допустимой скорости потока воздуха в канале. Если допустимая скорость потока будет выше нормы, то это приведет к потере давления на местные сопротивления, а также по длине, что повлечет за собой увеличение затрат электроэнергии. Также правильный расчет площади сечения воздуховодов необходим для того, чтобы уровень аэродинамического шума и вибрация не превышали норму.
При расчете нужно учитывать, что если вы выберете большую площадь сечения воздуховода, то скорость воздушного потока снизится, что положительно повлияет и на снижение аэродинамического шума, а также на затраты по электроэнергии. Но нужно знать, что в этом случае стоимость самого воздуховода будет выше. Однако использовать «тихие» низкоскоростные воздуховоды большого сечения не всегда возможно, так как их сложно разместить в запотолочном пространстве. Уменьшить высоту запотолочного пространства позволяет применение прямоугольных воздуховодов, которые при одинаковой площади сечения имеют меньшую высоту, чем круглые (например, круглый воздуховод диаметром 160 мм имеет такую же площадь сечения, как и прямоугольный размером 200×100 мм). В то же время монтировать сеть из круглых гибких воздуховодов проще и быстрее.
Поэтому при выборе воздуховодов обычно подбирают вариант, наиболее подходящий и по удобству монтажа, и по экономической целесообразности.
Площадь сечения воздуховода определяется по формуле:
Sс — расчетная площадь сечения воздуховода, см²;
L — расход воздуха через воздуховод, м³/ч;
V — скорость воздуха в воздуховоде, м/с;
2,778 — коэффициент для согласования различных размерностей (часы и секунды, метры и сантиметры).
Итоговый результат мы получаем в квадратных сантиметрах, поскольку в таких единицах измерения он более удобен для восприятия.
Фактическая площадь сечения воздуховода определяется по формуле:
S = π * D² / 400 — для круглых воздуховодов,
S = A * B / 100 — для прямоугольных воздуховодов, где
S — фактическая площадь сечения воздуховода, см²;
D — диаметр круглого воздуховода, мм;
A и B — ширина и высота прямоугольного воздуховода, мм.
Расчет сопротивления сети воздуховодов
После того как вы рассчитали площадь сечения воздуховодов, необходимо определить потери давления в вентиляционной сети (сопротивление водоотводной сети). При проектировании сети необходимо учесть потери давления в вентиляционном оборудовании. Когда воздух движется по воздуховодной магистрали, он испытывает сопротивление. Для того чтобы преодолеть это сопротивление, вентилятор должен создавать определенное давление, которое измеряется в Паскалях (Па). Для выбора приточной установки нам необходимо рассчитать это сопротивление сети.
Для расчета сопротивления участка сети используется формула:
Где R – удельные потери давления на трение на участках сети
L – длина участка воздуховода (8 м)
Еi – сумма коэффициентов местных потерь на участке воздуховода
V – скорость воздуха на участке воздуховода, (2,8 м/с)
Y – плотность воздуха (принимаем 1,2 кг/м3).
Значения R определяются по справочнику (R – по значению диаметра воздуховода на участке d=560 мм и V=3 м/с). Еi – в зависимости от типа местного сопротивления.
В качестве примера, результаты расчета воздуховода и сопротивления сети приведены в таблице:
Общие сведения
Вентиляция — организованный и регулируемый
воздухообмен, обеспечивающий удаление
из помещения воздуха, загрязненного
вредными примесями (газами, парами,
пылью), и подачу в него свежего воздуха.
По способу подачи в помещение свежего
воздуха и удалению загрязненного системы
вентиляции подразделяют на естественную,
механическую и смешанную. По назначению
вентиляция может быть общеобменной и
местной.
Общеобменная вентиляция – это система
вентиляции, которая предназначена для
подачи чистого воздуха в помещение,
удаления избыточной теплоты, влаги и
вредных веществ из помещения. В последнем
случае она применяется, если вредные
выделения поступаю непосредственно в
воздух помещения, а рабочие места не
фиксированы и располагаются по всему
помещению.
Обычно объем воздуха Lпрподаваемого в помещение при общеобменной
вентиляции, равен объему воздухаLв,удаляемого из помещения. Однако в
чистых цехах электровакуумного
производства для которых большое
значение имеет отсутствие пыли, объем
притока воздуха делается больше объема
вытяжки, за счет чего создается некоторые
избыток давления в производственном
помещении, что исключает попадание пыли
из соседних помещений. В общем случае
разница между объемами приточного и
вытяжного воздуха не должна превышать
10…15%.
В системах с механическим побуждением
перемещения воздуха по воздуховодам
осуществляется вентиляторами, которые
создают значительно большее давление
по сравнению с естественным побуждением.
Это дает возможность увеличить скорость
движения воздуха, подавать воздух на
большее расстояние и предусматривать
воздуховоды меньшего сечения.
Подбор вентилятора осуществляется по
аэродинамическим характеристикам,
которые составлены для каждого номера
и типа вентилятора и выражают зависимость
между его производительностью по
воздуху, давлением и числом оборотов
рабочего колеса. При этом из различных
типов и номеров вентиляторов выбирается
тот, чей КПД больший при одинаковых
производительности и давлении. Следует
помнить, что КПД выбранного вентилятора
должен быть не менее 0,85 ήмакс(ήмакс—
максимальный КПД вентилятора по его
аэродинамической характеристики).
Окружная скорость рабочего колеса
центробежного вентилятора по условию
бесшумности должна быть не более 25 м/с
для жилых зданий и 17 м/с для клубов и
кинотеатров; окружная скорость рабочего
колеса осевых вентиляторов – не более
35 м/с для жилых зданий и 25 м/с для клубов
и кинотеатров.
ФИЗИЧЕСКИЕ СОСТАВЛЯЮЩИЕ РАСЧЁТОВ
По способу работы, в настоящее время, вентиляционные схемы делятся на:
- Вытяжные. Для удаления использованного воздуха.
- Приточные. Для впуска чистого воздуха.
- Рекуперационные. Приточно-вытяжные. Удаляют использованный и впускают чистый.
В современном мире схемы вентиляции включают в себя различное дополнительное оборудование:
- Устройства для подогрева или охлаждения подаваемого воздуха.
- Фильтры для очистки запахов и примесей.
- Приборы для увлажнения и распределения воздуха по помещениям.
При расчёте вентиляции учитывают следующие величины:
- Расход воздуха в куб.м./час.
- Давление в воздушных каналах в атмосферах.
- Мощность подогревателя в квт-ах.
- Площадь сечения воздушных каналов в кв.см.
Этап первый
Сюда входит аэродинамический расчёт механических систем кондиционирования или вентиляции, который включает ряд последовательных операций.Составляется схема в аксонометрии, которая включает вентиляцию: как приточную, так и вытяжную, и подготавливается к расчёту.
Размеры площади сечений воздуховодов определяются в зависимости от их типа: круглого или прямоугольного.
Формирование схемы
Схема составляется в аксонометрии с масштабом 1:100. На ней указываются пункты с расположенными вентиляционными устройствами и потреблением воздуха, проходящего через них.
Выстраивая магистраль, следует обратить внимание на то какая система проектируется: приточная или вытяжная
Приточная
Здесь линия расчёта выстраивается от самого удалённого распределителя воздуха с наибольшим потреблением. Она проходит через такие приточные элементы, как воздуховоды и вентиляционная установка вплоть до места где происходит забор воздуха. Если же система должна обслуживать несколько этажей, то распределитель воздуха располагают на последнем.
Вытяжная
Строится линия от самого удалённого вытяжного устройства, максимально расходующего воздушный поток, через магистраль до установки вытяжки и дальше до шахты, через которую осуществляется выброс воздуха.
Если планируется вентиляция для нескольких уровней и установка вытяжки располагается на кровле или чердаке, то линия расчёта должна начинаться с воздухораспределительного устройства самого нижнего этажа или подвала, который тоже входит в систему. Если установка вытяжки находится в подвальном помещении, то от воздухораспределительного устройства последнего этажа.
Вся линия расчёта разбивается на отрезки, каждый из них представляет собой участок воздуховода со следующими характеристиками:
- воздуховод единого размера сечения;
- из одного материала;
- с постоянным потреблением воздуха.
Следующим шагом является нумерация отрезков. Начинается она с наиболее удалённого вытяжного устройства или распределителя воздуха, каждому присваивается отдельный номер. Основное направление – магистраль выделяется жирной линией.
Далее, на основе аксонометрической схемы для каждого отрезка определяется его протяжённость с учётом масштаба и потребления воздуха. Последний представляет собой сумму всех величин потребляемого воздушного потока, протекающего через ответвления, которые примыкают к магистрали. Значение показателя, который получается в результате последовательного суммирования, должно постепенно возрастать.
Определение размерных величин сечений воздуховодов
Производится исходя из таких показателей, как:
- потребление воздуха на отрезке;
- нормативные рекомендуемые значения скорости движения воздушного потока составляют: на магистралях — 6м/с, на шахтах где происходит забор воздуха – 5м/с.
Рассчитывается предварительное размерная величина воздуховода на отрезке, которая приводится к ближайшему стандартному. Если выбирается прямоугольный воздуховод, то значения подбираются на основе размеров сторон, отношение между которыми составляет не более чем 1 к 3.
Изоляционные материалы
Гамма средств при устройстве изоляции весьма обширна. Их различие состоит как в способе нанесения на поверхности, так и по толщине слоя термоизоляции. Особенности нанесения каждого вида учтены калькуляторами для подсчета изоляции трубопроводов. По-прежнему актуально использование различных материалов на основе битума с применением дополнительных армирующих изделий, например стеклоткани или стеклохолста.
Более экономичными и прочными являются полимерно-битумные составы. Они позволяют вести быстрый монтаж а качество покрытия при этом получается долговечным и эффективным. Материал, называемый ППУ, надежен и прочен, что позволяет его применение, как для канального, так и бесканального способа прокладки магистралей. Используется также жидкий пенополиуретан, наносимой на поверхность по ходу монтажа, а также и другие материалы:
- полиэтилен как многослойная оболочка, наносится в условиях промышленного производства для гидроизоляции;
- стекловата различной толщины, эффективный утеплитель из-за своей невысокой стоимости при достаточной прочности;
- для теплотрасс эффективно используются минеральные ваты расчетной толщины для утепления труб различных диаметров.
Монтаж изоляции
Расчет количества изоляции во многом зависит от способа ее нанесения. Это зависит от места применения – для внутреннего или наружного изолирующего слоя. Его можно выполнить самостоятельно или использовать программу – калькулятор для расчета теплоизоляции трубопроводов. Покрытие по наружной поверхности используется для водяных трубопроводов горячего водоснабжения при высокой температуре с целью ее защиты от коррозии. Расчет при таком способе сводится к определению площади наружной поверхности водопровода, для определения потребности на погонный метр трубы.
Для труб для водопроводных магистралей применяется внутренняя изоляция. Основное ее назначение – защита металла от коррозии. Ее используют в виде специальных лаков или цементно-песчаной композиции слоем толщиной несколько мм. Выбор материала зависит от способа прокладки – канальный или бесканальный. В первом случае на дне отрытой траншее размещаются бетонные лотки, для размещения. Полученные желоба закрываются бетонными же крышками, после чего канал заполняется ранее вынутым грунтом.
Бесканальная прокладка используется, когда рытье теплотрассы не представляется возможным. Для этого нужно специальное инженерное оборудование. Расчет объема тепловой изоляции трубопроводов в онлайн-калькуляторах является достаточно точным средством, позволяющим рассчитать количество материалов без возни со сложными формулами. Нормы расхода материалов приводятся в соответствующих СНиП.
Расчет толщины теплоизоляции для технических, инженерных систем
ArmWin RU (Бета-версия)
Your browser does not support iframes. Ваш браузер не поддерживает встроенные окна
Страницы сайта содержат общую информацию о применении нашей продукции. В случае, если Вам необходимо правильно подобрать теплоизоляцию для конкретных условий применения и в соответствии со стандартами принятыми в Вашем регионе, пожалуйста, свяжитесь с нами, используя данные, указанные в разделе Контакты.
Все данные и техническая информация получены при испытаниях в типичных условиях эксплуатации. Получателям этой информации следует, в их же собственных интересах, уточнить в ООО «Армаселль», применима ли она в тех условиях, в которых планируется использование продукции. Данные могут меняться без предварительного предупреждения.
В настоящее время в сети имеется немало бесплатных онлайн калькулятор и сервисов, позволяющих выполнить достаточно точные расчеты строительных конструкций.
В данном обзоре вы найдете подборку расчетных программ, используя которые вы сможете быстро выполнить расчеты по теплоизоляции, огнезащиты, звукоизоляции, технической изоляции, кровли, каменным конструкциям и сэндвич-панелям.