Допустимая норма радиации для человека: дозы в мкр/ч, зивертах и микрозивертах
Содержание:
- Особенности радиационного исследования в медицине
- Мощность — поглощенная доза — излучение
- Дозиметрические величины и единицы их измерения
- Сила воздействия дозы и единицы измерения
- Групповые дозы
- Как именно радиация влияет на клетки?
- Экспозиционная доза
- Нормы согласно СанПин
- Где можно столкнуться с радиацией
- В каких единицах измеряются дозы полученной радиации
- В каких единицах измеряется радиоактивность?
- Эквивалентная доза. Относительная биологическая эффективность (обэ). Коэффициент качества излучения. Единицы эквивалентной дозы.
- Вынужденные диагностические дозы рентген облучения
Особенности радиационного исследования в медицине
Рентгеновское излучение занимает почетное второе место среди всех способов облучения человека, после природного. Но по сравнению с последним, излучение, которое применяется в рентгенодиагностике, намного опаснее из-за таких причин:
- Рентгеновское излучение превышает мощность натуральных источников радиации.
- В диагностических целях облучается ослабленный заболеванием человек, что усиливает вред здоровью от рентгеновских лучей.
- Медицинское излучение имеет неравномерное распределение по организму.
- Органы могут подвергаться рентгеновским лучам несколько раз.
Однако, в отличие от радиации природного происхождения, которое трудно предотвратить, рентгенодиагностика уже давно включает в себя разные способы защити от вредного влияния излучения на человека. Об этом немного позже.
Мощность — поглощенная доза — излучение
Мощность поглощенной дозы излучения представляет поглощенную дозу излучения в единицу времени. За единицу мощности поглощенной дозы излучения принимают рад в секунду ( рад / сек): 1 рад / сек 0 01 вт / кг.
Мощность поглощенной дозы излучения — это поглощенная доза излучения, отнесенная к единице времени. Ее единицами измерения будут ватт на килограмм ( вт / кг) — в СИ и рад в секунду ( рад / сек) — внесистемная.
Мощность поглощенной дозы излучения ( мощность дозы излучения) — это доза, поглощаемая в единицу времени.
Мощность поглощенной дозы излучения выражается в Гр / с. Для фотонного излучения используется экспозиционная доза.
Соответственно различают мощность поглощенной дозы излучения и мощность экспозиционной дозы рентгеновского излучения и гамма-излучения.
На степень прививки влияет мощность поглощенной дозы излучения.
Противоточная схема движения — носителя в плоском облучателе позволяет варьировать мощность поглощенных доз излучения и устанавливать равномерное поле Y-излучения по всей длине облучателя.
Поглощенная доза излучения, отнесенная к единице времени, называется мощностью поглощенной дозы излучения или мощностью дозы. Аналогично этому определению выражается и экспозиционная доза. Мощность дозы в общем случае может быть непостоянной во времени.
Поглощенная доза излучения регулируется скоростью перемещения контейнера на транспортере, а мощность поглощенной дозы излучения — выбором соответствующего значения тока трубки. Облучаемые объекты перемещаются в рабочую зону под потоком излучения в контейнерах размерами 1200X500X250 мм из алюминия или пластмасс, установленных на ленточных транспортерах.
Рад в секунду ( рад / с) () — единица мощности поглощенной дозы излучения, равная мощности дозы излучения, при которой за время 1 с поглощенная доза излучения возрастает на 1 рад.
Имеет ту же размерность L T-3 и выражается в тех же единицах, что и мощность поглощенной дозы излучения.
Поглощенная доза излучения и экспозиционная доза рентгеновского и гамма-излучений, отнесенные к единице времени, называются мощностью поглощенной дозы излучения и мощностью экспозиционной дозы рентгеновского и гамма-излучений.
Для характеристики степени ионизации вещества и оценки количества поглощенной веществом энергии вводятся [ величины: поглощенная доза излучения, мощность поглощенной дозы излучения, экспозиционная доза рентгеновского и гамма-излучений, мощность экспозиционной дозы.
Для использования листовых материалов в качестве высокочастотных диэлектриков важное значение имеет необратимое увеличение тангенса угла диэлектрических потерь, особенно возрастающее с понижением мощности поглощенной дозы излучения до величины менее 1 Вт / кг при облучении на воздухе.
Влияние условий облучения ( вид излучения, мощность поглощенной дозы, температура) на диффузию различных газов в полиэтилен низкой плотности рассмотрено в работе 1 Показано, что с ростом мощности поглощенной дозы излучения и температуры диффузия газов увеличивается. Проницаемость гелия при этом превышает проницаемость азота в 4 раза.
Дозиметрические величины и единицы их измерения
Когда излучение проходит сквозь материю, оно отдает свою энергию, ионизируя молекулы вещества. Эта энергия называется поглощенной дозой, единицей измерения которой является Грей (Gy, Гр). 1 Грей = 1 Джоуль / кг. Но поглощенная доза не является мерой для оценки вызванного ущерба для организма — должен быть учтен также тип излучения.
Один Грей альфа-излучения наносит вред организму в 20 раз больше, чем один Грей гамма- или бета-излучения. Это различие учитывается коэффициентом качества, отражающим способность излучения данного вида повреждать ткани организма.
Коэффициентом качества для альфа-излучения равен 20, а для бета- и гамма-излучения — 1.
Эквивалентная Доза
Эквивалентная доза (ДЭта) — это поглощенная доза (ДПТ) в органе или ткани (Т), умноженная на соответствующий взвешивающий коэффициент для данного вида излучения (коэффициент качества) WR. Единицей измерения эквивалентной дозы является Зиверт (Зв).
Эквивалентная доза = Поглощенная доза * коэффициент качества
При воздействии различных видов излучения с различными взвешивающими коэффициентами эквивалентная доза определяется как сумма эквивалентных доз для этих видов излучения.
Взвешивающие коэффициенты для отдельных видов излучения (коэффициенты качества) WR
Эквивалентная эффективная доза (ДЭФТ) — величина, характеризующая облучение всего тела человека и отдельных его органов и тканей с учетом их радиочувствительности, это сумма произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты (коэффициенты радиационного риска) WT.
Взвешивающие коэффициенты для разных органов и тканей (коэффициенты радиационного риска) WT
Эффективная доза измеряется в зивертах, (Зв). В ежедневной практике эффективная доза называется дозой облучения. Один зиверт — очень большая доза облучения. Уровень излучения обычно составляет несколько тысячных частей зиверта, и поэтому мы обычно говорим о миллизивертах, (мЗв).
В лучевой терапии ионизирующее излучение направлено только на определенную часть органа, чтобы избежать ненужного облучения здоровой ткани. Повреждение ткани зависит от объема, в котором было поглощено некоторое количество лучистой энергии. Маленький объем может выдерживать большую дозу чем большой объем
Таким образом, имеется важное различие между дозой на орган и дозой на все тело.
Чтобы сравнить действие излучения по риску повреждения, доза облучения органа преобразована в дозу облучения всего тела — эффективный эквивалент дозы.
Например:
а) эквивалентная доза облучения легких составила 0,02 мЗв. Коэффициент радиационного риска для легких составляет 0,12. Какова эффективная эквивалентная доза облучения на все тело?
Составляется пропорция: х — 1; 0,2 мЗв — 0,12. Отсюда: х=(1х0,2)/0,12.
Т.о. эффективная эквивалентная доза на все тело составляет: 1,67 мЗв.
б) Доза на тело составила 1 мЗв, какова эквивалентная доза облучения легких, если весовой коэффициент для легких равен 0,12?
Составляется пропорция: 1 мЗв — 1 (весовой коэффициент на все тело), х — 0,12; Тогда х= (1х0,12)/1. Т.о. экв.доза облучения пегкну составив 0 19 мЗв
Мощность Дозы
Мощность дозы — доза облучения в единицу времени. Она, обычно, представляется в мил- лизиверт в час — мЗв/ч (mSv/h).
Доза облучения работника зависит от мощности дозы источника так же, как расстояние зависит от скорости. Это проиллюстрировано на рисунке 2.9
Сила воздействия дозы и единицы измерения
Показатель интенсивности облучения – подстановка конкретной дозы под влияние определенного излучения за временную измерительную единицу. Этой величине присуща разность дозы (эквивалентной, поглощенной и др.) деленной на единицу измерения времени. Существует множество специально созданных единиц.
Поглощенная доза излучения определяется по формуле подходящей конкретному излучению и типу поглощаемого количества излучения (биологическому, поглощенному, экспозиционному и т.д.). Существует множество способов их вычисления, основанных на разных математических принципах, и используются различные измерительные единицы. Примерами измерительных единиц служат:
- Интегральный вид – грей-килограмм в СИ, вне системы измеряется в рад-граммах.
- Эквивалентный вид – зиверт в СИ, вне системы измеряется – в бэрах.
- Экспозиционный вид – кулон-килограмм в СИ, вне системы измеряется – в рентгенах.
Существуют и другие измерительные единицы, соответствующие иным формам поглощенной дозы излучения.
Групповые дозы
Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путём умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр). Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.
Кроме того, выделяют следующие дозы:
- пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
- предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
- удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску.
- минимально летальная — минимальная доза излучения, вызывающая гибель всех облучённых объектов.
Как именно радиация влияет на клетки?
Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества.
С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.
Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.
Экспозиционная доза
Основная характеристика взаимодействия ионизирующего излучения со средой — это ионизационный эффект. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.
Экспозиционная доза — это отношение суммарного электрического заряда ионов одного знака, образованных после полного торможения в воздухе электронов и позитронов, освобождённых или порождённых фотонами в элементарном объёме воздуха, к массе воздуха в этом объёме.
В международной системе единиц (СИ) единицей измерения экспозиционной дозы является кулон, делённый на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.
Нормы согласно СанПин
Документы:
- НРБ-99. Это основной документ. Прописаны нормативы отдельно для гражданского населения и работников, чей труд предполагает контакты с источниками радиации.
- ОСПОР-99.
- Сколько для помещений? Безопасное количество гамма-лучей – 0,25-0,4 мкЗв/час (эта цифра включает естественный фон для конкретной местности), радон и торон в совокупности – не более 200 Бк/куб.м. в год.
- В питьевой воде – сумма всех радионуклидов не больше 2,2 Бк/кг. Радона – не более 60 Бк/час.
- Для продуктов норма радиации прописана детально, по каждому виду отдельно.
Если дозы в квартире превышают указанные в п. 1, здание считается опасным для жизни и переквалифицируется из жилого в нежилое, либо предназначаются под снос.
Такая вода еще раз проходит оценку на содержание конкретных радионуклидов отдельно по каждому виду.
Интересно: иногда можно услышать, что вредно употреблять в пищу бананы или бразильские орехи. Орехи действительно содержат некоторое количество радона, поскольку корни деревьев, на которых они растут, уходят крайне глубоко в почву, отчего и поглощают естественный, присущий недрам фон.
Бананы содержат калий-40. Однако, чтобы получить количество, которое будет опасно, необходимо употребить в пищу миллионы этих продуктов.
Важно: многие продукты естественного происхождения содержат радиоактивные изотопы. В среднем норма допустимой радиации, получаемой с пищей – 40 миллибэров/год (10% годовой дозы)
Все реализуемые через магазины продукты, предназначенные в пищу, должны проходить проверку на заражение стронцием, цезием.
Где можно столкнуться с радиацией
Радиация преследует человека повсюду. Сама земля имеет естественный радиационный фон. Он может различаться в зависимости от региона. Самый большой уровень радиации в нашей стране наблюдается в Алтайском крае. Но даже он настолько мал, что считается полностью безопасным. Гораздо опаснее искусственно созданные источники ионизирующего излучения, с которыми мы сталкиваемся достаточно часто:
- Рентгенографическое оборудование в больницах. Каждый год мы проходим флюорографическое обследование и подвергаемся облучению. Доза радиации в рентгенах мала и при однократном прохождении такой процедуры вред здоровью не наносится.
- Сканирующие устройства в аэропортах. Они действуют аналогично медицинскому рентгену. Лучи проходят сквозь тело человека, поэтому доза облучения крайне мала.
- Экраны старых телевизоров, оснащенных электронно-лучевыми трубками.
- Реакторы атомных электростанций. Это наиболее мощный источник. Пока он находится в целостности, особой опасности не представляет. Но любое его повреждение грозит глобальной катастрофой.
- Радиоактивные отходы. При их неправильной утилизации возможно заражение окружающей среды, которое несет в себе потенциальную опасность.
Нормальная доза радиации не несет в себе большой опасности для жизни или здоровья человека. При ее незначительном превышении развивается лучевая болезнь. Если же на человека воздействует большая доза облучения, наступает моментальная смерть.
В каких единицах измеряются дозы полученной радиации
Человеку, далекому от медицины и рентгенологии, тяжело разобраться в обилии специфической терминологии, цифрах доз и единицах, в которых они измеряются. Попробуем привести информацию к понятному минимуму.
Итак, в чем же измеряется доза рентгеновского излучения? Единиц измерения радиации много. Мы не будет подробно разбирать все. Беккерель, кюри, рад, грэй, бэр – вот список основных величин радиации. Применяются они в разных системах измерения и областях радиологии. Остановимся только на практически значимых в рентгендиагностике.
Нас больше будут интересовать рентген и зиверт.
Характеристика уровня проникающей радиации, излучаемой рентгеновским аппаратом, измеряется в единице под названием «рентген» (Р).
Чтобы оценить действие радиации на человека, введено понятие эквивалентной поглощенной дозы (ЭПД). Помимо ЭПД существуют и другие виды доз – все они представлены в таблице.
Эквивалентная поглощенная доза (на картинке – Эффективная эквивалентная доза) представляет собой количественную величину энергии, которую поглощает организм, но при этом учитывается биологическая реакция тканей тела на излучение. Измеряется она в зивертах (Зв).
Зиверт приблизительно сопоставим с величиной 100 рентген.
Естественный фон облучения и дозы, выдаваемые медицинской рентгенаппаратурой, намного ниже этих значений, поэтому для их измерения используются величины тысячной доли (милли) или одной миллионной доли (микро) Зиверта и Рентгена.
В цифрах это выглядит так:
- 1 зиверт (Зв) = 1000 миллизиверт (мЗв) = 1000000 микрозиверт (мкЗв)
- 1 рентген (Р) = 1000 миллирентген (мР) = 1000000 миллирентген (мкР)
Чтобы оценить количественную часть излучения, получаемого за единицу времени (час, минуту, секунду) используют понятие – мощность дозы, измеряемую в Зв/ч (зиверт-час), мкзв/ч (микрозиверт-ч), Р/ч (рентген-час), мкр/ч (микрорентген-час). Аналогично – в минутах и секундах.
Можно еще проще:
- общее излучение измеряется в рентгенах;
- доза, получаемая человеком – в зивертах.
Дозы облучения, полученные в зивертах, накапливаются в течение всей жизни. Теперь попробуем выяснить, сколько же получает человек этих самых зивертов.
В каких единицах измеряется радиоактивность?
Мерой радиоактивности радионуклида в соответствии с системой измерений СИ, является его активность, которая измеряется в Беккерелях (Бк). Один Бк равен 1 ядерному превращению в секунду. Кроме того, в качестве меры радиоактивности широко используется не системная величина Кюри (Ки) и ее производные (милликюри, микрокюри и т.д.). Численно 1 Кюри = 3.7*1010 Бк, а 1 Бк = 0.027нКи (наноКюри). Содержание активности в единице массы вещества характеризуется удельной активностью, которая измеряется в Бк/кг (л).
В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма)?
Мерой воздействия ионизирующего излучения является экспозиционная доза и измеряется она в Рентгенах (Р) и его производных (млР, мкР), а количественную сторону его характеризует мощность экспозиционной дозы,, которая измеряется в Рентгенах/сек (Р/сек.) и его производных (млР/час, мкР/час, мкР/сек).
Рентген – это доза рентгеновского или гамма-излучения в воздухе, при которой на 0.001293 г воздуха образуются ионы с суммарным зарядом в одну электростатическую единицу количества электричества каждого знака.
Эквивалентная доза – она равна произведению поглощенной дозы на средний коэффициент качества ионизирующего излучения (Например: коэффициент качества гамма-излучения составляет 1, а альфа-излучения – 20).
Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр ( мкбэр) и т.д., 1 бэр = 0,01 Дж/кг-1. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,
1Зв=1Дж/кг-1= 100 бэр.
1 мбэр = 1*10-3 бэр; 1 мкбэр = 1*10-6 бэр;
Поглощенная доза — количество энергии ионизирующего излучения которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.
Единица поглощенной дозы – рад и его дольные значения, 1 рад = 0,01 Дж/кг.
Единица поглощенной дозы в системе СИ – грей, Гр, 1Гр=100рад=1Дж/кг-1
Доза – это сокращенное название эквивалентной дозы — мощности экспозиционной дозы умноженной на время экспозиции, единица измерения бэр.
Мощность дозы – сокращенное название мощности эквивалентной дозы.
Мощность эквивалентной дозы – это отношение приращения эквивалентной дозы за интервал времени к этому интервалу времени, единица измерения бэр/час, Зв/час.
В каких единицах измеряется альфа- и бета-излучение?
Количество альфа- и бета-излучения определяется как величина плотности потока частиц с единицы площади, в единицу времени a-частиц*мин/см2, b-частиц*мин/см2.
Эквивалентная доза. Относительная биологическая эффективность (обэ). Коэффициент качества излучения. Единицы эквивалентной дозы.
Для оценки биологического эффекта
воздействия излучения произвольного
состава потребовалось введение новой
характеристики дозы. В задачах радиационной
безопасности при облучении в малых
дозах (меньше ~0,1 Гр) это эквивалентная
доза с единицей измерения в СИ – зиверт
(Зв). Зиверт – единица эквивалентной
дозы любого вида излучения в биологической
ткани, которое создаёт такой же
биологический эффект, как и поглощённая
доза в 1 Гр образцового рентгеновского
излучения (излучение с граничной энергией
200 КэВ). Внесистемная единица эквивалентной
дозы – бэр (биологический эквивалент
рада). Бэр – единица эквивалентной дозы
любого вида излучения в биологической
ткани, которое создаёт такой же
биологический эффект, как и поглощённая
доза в 1 рад образцового рентгеновского
излучения. Т.о., 1 Зв = 100 бэр.
Для сравнения биологических эффектов,
производимых одинаковой поглощённой
дозой различных видов излучения,
используют понятие «относительная
биологическая эффективность» (ОБЭ). Под
ОБЭ излучения понимают отношение
поглощённой дозы образцового рентгеновского
излучения к поглощённой дозе данного
рассматриваемого вида излучения, при
условии, что эти дозы вызывают одинаковый
биологический эффект. Регламентированные
значения ОБЭ, установленные для контроля
степени радиационной опасности при
хроническом облучении, называют
коэффициентом качества излучения K.
Этот безразмерный коэффициент определяет
зависимость неблагоприятных биологических
последствий облучения человека в малых
дозах от полной линейной передачи
энергии (ЛПЭ) излучения (табл. №10)
Табл. 10. Зависимость коэффициента
качества от ЛПЭ.
ЛПЭ, КэВ/мкм H2O |
3,5 |
7 |
23 |
53 |
175 |
K |
1 |
2 |
5 |
10 |
20 |
Для
-квантов,
электронов и позитроновK=1.
Если спектральный состав излучения
неизвестен, рекомендуется использовать
значения K, приведённые
в табл. 11.
Табл. 11. ЗначенияKдля излучений различных видов с
неизвестным спектральным составом.
Вид излучения |
K |
Рентгеновское, |
1 |
Нейтроны с |
3 |
Нейтроны с |
10 |
Протоны с |
10 |
-излучение |
20 |
Тяжёлые |
20 |
Для нейтронов и протонов различной
энергии значения коэффициента качества
приведены в табл. 12.
Табл. 12. ЗначенияKдля протонов и нейтронов.
Энергия |
K |
Энергия |
K |
Энергия |
K |
Энергия |
K |
10-7 |
2,8 |
2,5 |
10,0 |
2 |
13,5 |
200 |
2,4 |
5∙10-3 |
2,5 |
5,0 |
8,4 |
5 |
11,7 |
500 |
2,1 |
2∙10-2 |
2,7 |
10,0 |
6,7 |
10 |
9,4 |
103 |
2,1 |
10-1 |
9,0 |
20 |
8,0 |
20 |
7,0 |
3∙103 |
2,2 |
5∙10-1 |
12,0 |
100 |
4,0 |
50 |
4,7 |
104 |
2,3 |
1 |
12,0 |
1000 |
2,5 |
100 |
3,4 |
105 |
2,4 |
Эквивалентная доза излучения (H)
определяется произведением поглощённой
дозы (D)
излучения в ткани на коэффициент качества
(K) этого излучения:
.
Если Dизмеряется в
Гр, тоH– в зивертах,
еслиD– в радах, тоH– в бэрах.
Итак, коэффициент качества Kизлучения – это зависящий от ЛПЭ
коэффициент, на который надо умножить
поглощённую дозу, чтобы биологический
эффект облучения людей выражался в
одной и той же мере независимо от вида
излучения.
Для смешанного излучения Hопределяют как
где Di– поглощённые дозы отдельных видов
излучения,Ki– соответствующие коэффициенты качества
этих излучений.
В связи с последними замечаниями единицу
эквивалентной дозы – Зиверт можно
определить и таким образом: Зиверт равен
такой эквивалентной дозе, при которой
произведение поглощённой дозы в
биологической ткани стандартного
состава на средний коэффициент качества
излучения равно 1 Дж/кг.
В биологическом объекте доза излучения
распределяется неравномерно. Распределение
её определяется накоплением вторичных
ионизирующих частиц и ослаблением в
объекте первичного излучения источника.
Конкуренция этих двух процессов может
приводить к появлению заметного максимума
в распределении дозы. Например, для
тепловых нейтронов он наблюдается на
глубине порядка 3 мм. При энергии 5–20
кэВ имеет место смещение максимума дозы
в глубь тела ( на несколько сантиметров).
С дальнейшим увеличением энергии
максимум дозы приближается к поверхности
и примерно с Е=100 кэВ локализуется на
ней. Далее, при энергии Е≥(2,5-5) МэВ
максимум дозы снова смещается в глубь
тела (исследования на фантомах).
Вынужденные диагностические дозы рентген облучения
Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.
Важно: современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека
Но все же попытаемся привести усредненные цифры доз, которые может получать пациент
Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:
- цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
- плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
- рентгенография органов грудной полости: 0,15-0,4 мЗв.;
- дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.
Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.
Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.
Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.
Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.
Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.
Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.
Процедура | Эффективная доза облучения | Сопоставимо с природным облучением, полученным за указанный промежуток времени |
Рентгенография грудной клетки | 0,1 мЗв | 10 дней |
Флюорография грудной клетки | 0,3 мЗв | 30 дней |
Компьютерная томография органов брюшной полости и таза | 10 мЗв | 3 года |
Компьютерная томография всего тела | 10 мЗв | 3 года |
Внутривенная пиелография | 3 мЗв | 1 год |
Рентгенография желудка и тонкого кишечника | 8 мЗв | 3 года |
Рентгенография толстого кишечника | 6 мЗв | 2 года |
Рентгенография позвоночника | 1,5 мЗв | 6 месяцев |
Рентгенография костей рук или ног | 0,001 мЗв | менее 1 дня |
Компьютерная томография – голова | 2 мЗв | 8 месяцев |
Компьютерная томография – позвоночник | 6 мЗв | 2 года |
Миелография | 4 мЗв | 16 месяцев |
Компьютерная томография – органы грудной клетки | 7 мЗв | 2 года |
Микционная цистоуретрография | 5-10лет: 1,6 мЗв Грудной ребенок: 0,8 мЗв | 6 месяцев 3 месяца |
Компьютерная томография – череп и околоносовые пазухи | 0,6 мЗв | 2 месяца |
Денситометрия костей (определение плотности) | 0,001 мЗв | менее 1 дня |
Галактография | 0,7 мЗв | 3 месяца |
Гистеросальпингография | 1 мЗв | 4 месяца |
Маммография | 0,7 мЗв | 3 месяца |
Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности
Некоторые люди ошибочно причисляют этот метод к рентгеновским.
Нормативы принятого закона о радиационной безопасности допускают безопасную дозу, полученную человеком за 70 лет жизни до 70 мЗв.
Облучение при рентгене — риски, дозы, техника безопасности, видео:
Лотин Александр Владимирович, врач-рентгенолог
80, всего, сегодня
(51 голос., средний: 4,55 из 5)