Модуль юнга е показывает отношение нормальных напряжений к относительным деформациям в пределах пропорциональности
Содержание:
ДЕФОРМАЦИИ БЕТОНА ПРИ КРАТКОВРЕМЕННОМ НАГРУЖЕНИИ. МОДУЛЬ УПРУГОСТИ БЕТОНА
ВЫСОКОПРОЧНЫЙ БЕТОН
Бетон как материал, не подчиняющийся закону Гука, имеет диаграмму сжатия криволинейного очертания. Известны различные варианты математического описания кривой G = /(є), в основу которых положены экспериментальные закономерности . Исследования, значительная часть которых была проведена в ЦНИИС , позволили связать характерную форму этой кривой с физическими процессами деформирования и разрушения бетона (см. главу II).
При кратковременном возрастании статической нагрузки отклонение диаграммы сжатия от прямолинейной обусловлено преимущественно нарушением сплошности материала, вследствие перехода границы микроразрушения Rr по мере роста нагрузки и дальнейшим развитием микротрещин в бетоне . В более общем случае степень искривления диаграммы зависит также от скорости нагружения, поскольку наблюдаемые деформации включают определенную долю деформаций ползучести, проявляющихся частично на всех уровнях нагрузки. Поэтому даже при небольших нагрузках (в зоне так называемой линейной ползучести) обнаруживается некоторая криволинейность диаграммы . Вследствие этого модуль деформаций бетона, определяемый как тангенс угла наклона секущей к кривой о — є, не является постоянной величиной и уменьшается по мере роста напряжений.
Для практических оценок пределов изменения секущего модуля под кратковременной нагрузкой необходимо располагать данными, по крайней мере, о двух параметрах кривой а — є, начальном угле наклона этой кривой (начальный модуль деформаций) и величине деформаций, соответствующей максимуму кривой (предельная деформация под кратковременной нагрузкой). В указанном диапазоне модуль деформаций изменяется более или менее плавно . Значения обоих параметров, а также характер изменения модуля деформаций с ростом напряжений от нуля до максимальной величины существенно зависят от особенностей структуры бетона .
Рассмотрим характеристики деформативной способности бетона при кратковременном нагружении (начальный модуль деформаций и величину предельной деформативности), которые наиболее часто применяются для расчетов элементов конструкций.
Хотя наибольшее число экспериментальных данных в этой области получено при испытании бетонов в условиях одноосного сжатия, установленные закономерности можно с достаточным основанием использовать применительно к действию растягивающих напряжений в бетоне .
В лабораторных условиях начальный модуль деформаций бетона Е = ^ находят при определенной величине
Относительного уровня напряжений в бетоне, составляющей 20—30% предела прочности опытных образцов . В этой области напряжений (и вплоть до границы R?) кривая, характеризующаяся зависимостью а — є, имеет незначительную кривизну, поэтому начальный модуль деформаций практически не зависит от величины напряжений. Повторным нагружением бетона в зоне невысоких напряжений до некоторой степени можно исключить влияние остаточных деформаций бетона на величину модуля. Определенную таким путем характеристику деформативности бетона с ненарушенной структурой рассматривают условно как модуль упругости (начальный модуль упругости) этого материала.
Кольца колодцев
Кольца колодцев были и остаются очень востребованным строительным материалом. К слову, кольца колодцев приобретают не только те, чья деятельность связана с водоснабжением и канализацией, но и телефонисты, Интернет-провайдеры и, конечно …
ОСОБЕННОСТИ ВЗАИМОСВЯЗИ МОДУЛЯ УПРУГОСТИ И ПРОЧНОСТИ БЕТОНА
Полученное выражение (V.15) дает возможность сформулировать общее положение о характере зависимости меж — ду упругими и прочностными свойствами тяжелого бетона. Особенность этой связи заключается в том, что оца не является …
ФАКТОРЫ, ВЛИЯЮЩИЕ НА ВЕЛИЧИНУ УСАДКИ БЕТОНА
Об усадке тяжелого бетона имеется не меньше экспериментальных данных, чем о его ползучести. Попытки- использовать эти данные для получения общих количественных закономерностей явления содержатся в ряде работ. При оценке возможной …
Модуль упругости бетона в20
- Классификация
- Виды и таблицы
- Модуль упругости — от чего он зависит
- Заключение
Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.
Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.
Испытание на растяжение
Виды и таблицы
Заливка плитного фундамента
- Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
- Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Наименование бетона | Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа | ||||||||||||||||||
B1 | B1,5 | B2 | B2,5 | B3,5 | B5 | B7,5 | B10 | B12,5 | В15 | В20 | В25 | В30 | B35 | B40 | B45 | B50 | B55 | B60 | |
Тяжёлые | |||||||||||||||||||
Естественный цикл затвердевания | — | — | — | 9,5 | 13 | 16 | 18 | 21 | 23 | 27 | 30 | 32,5 | 34,5 | 36 | 37,5 | 39 | 39,5 | 40 | |
Тепловая обработка при атмосферном давлении | — | — | — | — | 8,5 | 11,5 | 14,5 | 16 | 19 | 20,5 | 24 | 27 | 29 | 31 | 32,5 | 34 | 35 | 35,5 | 36 |
Автоклавная обработка | — | — | — | — | 7 | 10 | 12 | 13,5 | 16 | 17 | 20 | 22,5 | 24,5 | 26 | 27 | 28 | 29 | 29,5 | 30 |
Мелкозернистые | |||||||||||||||||||
А-группа (естественное отвердение) | — | — | — | — | 7 | 10 | 13,5 | 15,5 | 17,5 | 19,5 | 22 | 24 | 26 | 27,5 | 28,5 | — | — | — | — |
Тепловая обработка при атмосферном давлении | — | — | — | — | 6,5 | 9 | 12,5 | 14 | 15,5 | 17 | 20 | 21,5 | 23 | 24 | 24,5 | — | — | — | — |
Б-группа (естественное отвердение) | — | — | — | — | 6,5 | 9 | 12,5 | 14 | 15,5 | 17 | 20 | 21,5 | 23 | — | — | — | — | — | — |
Теплообработка при автоклавном давлении | — | — | — | — | 5,5 | 8 | 11,5 | 13 | 14,5 | 15,5 | 17,5 | 19 | 20,5 | ||||||
В-группа автоклавного отвердения | — | — | — | — | — | — | — | — | — | 16,5 | 18 | 19,5 | 21 | 21 | 22 | 23 | 24 | 24,5 | 25 |
Лёгкие и горизонтальные — средняя плотность D | |||||||||||||||||||
800 | — | — | — | 4 | 4,5 | 5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — |
1000 | — | — | — | 5 | 5,5 | 6,3 | 7,2 | 8 | 8,4 | — | — | — | — | — | — | — | — | — | — |
1200 | — | — | — | 6 | 6,7 | 7,6 | 8,7 | 9,5 | 10 | 10,5 | — | — | — | — | — | — | — | — | — |
1400 | — | — | — | 7 | 7,8 | 8,8 | 10 | 11 | 11,7 | 12,5 | 13,5 | 14,5 | 15,5 | — | — | — | — | — | — |
1600 | — | — | — | — | 9 | 10 | 11,5 | 12,5 | 13,2 | 14 | 15,5 | 16,5 | 17,5 | 18 | — | — | — | — | — |
1800 | — | — | — | — | — | 11,2 | 13 | 14 | 14,7 | 15,5 | 17 | 18,5 | 19,5 | 20,5 | 21 | — | — | — | — |
2000 | — | — | — | — | — | — | 14,5 | 16 | 17 | 18 | 19,5 | 21 | 22 | 23 | 23,5 | — | — | — | — |
Ячеистые, автоклавное твердение, плотность D | |||||||||||||||||||
500 | 1,1 | 1,4 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
600 | 1,4 | 1,7 | 1,8 | 2,1 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
700 | — | 1,9 | 2,2 | 2,5 | 2,9 | — | — | — | — | — | — | — | — | — | — | — | — | — | — |
800 | — | — | — | 2,9 | 3,4 | 4 | — | — | — | — | — | — | — | — | — | — | — | — | — |
900 | — | — | — | — | 3,8 | 4,5 | 5,5 | — | — | — | — | — | — | — | — | — | — | — | — |
1000 | — | — | — | — | — | 6 | 7 | — | — | — | — | — | — | — | — | — | — | — | — |
1100 | — | — | — | — | — | 6,8 | 7,9 | 8,3 | 8,6 | — | — | — | — | — | — | — | — | — | — |
1200 | — | — | — | — | — | — | 8,4 | 8,8 | 9,3 | — | — | — | — | — | — | — | — | — | — |
Таблица модулей упругости бетона с учётом СНИП 2.03.01-84
Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.
Рекомендация
При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция
Модуль упругости — от чего он зависит
Бетонные арки. Фото
В первую очередь, упругость зависит от характеристик наполнителя, к тому же, если отобразить такое влияние на графической схеме, то мы увидим прямолинейное возрастание.
Получается, что чем выше значение модуля, тем больше упругость раствора, где самые высокие показатели у тяжёлых бетонов, так как там используются очень плотные наполнители — щебень и гравий.
Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля.
Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.
Автоклавная обработка
Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом.
Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.
для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.
Приготовление бетона своими руками при строительстве дома
Технические характеристики
Тяжелый бетон В20 М250 обладает средними характеристиками между М200 и М300, что делает его оптимальным для эксплуатации в некоторых условиях.
Основные технические показатели материала:
Показатель | Единицы измерения | Значение |
---|---|---|
Прочность на сжатие | кг/см2 | 260 – 262 |
Расчетное сопротивление на осевое сжатие | Rb, МПа | 11,5 |
Rbt, МПа | 0,90 | |
Плотность | кг/м3 | 1800 – 2300 |
Морозостойкость | Циклов, F | f50, f75, f100, f150 |
Водонепроницаемость | w2, w4, w6, w8 | |
Подвижность раствора | При измерении конусом | П2-П4 |
Модуль упругости | Еb, МПа ∙ 10-3 | 27,5 |
Вес бетона сильно варьируется из-за свойств наполнителей, в частности – щебня. Если используется известняк с низким удельным весом, то масса бетонного раствора не превысит 1800-1900 кг за тонну, при введении гранитного камня показатель увеличивается до максимального значения.
В состав бетона могут входить пластификаторы, оказывающие влияние на подвижность, прочность, водонепроницаемость и морозостойкость раствора. Посредством присадок можно получить гидротехнический бетон В20.
П2-П4 означает хорошую подвижность рабочей массы, материал можно подавать на объект бетононасосом, повышая эффективность и скорость труда.
5. ОБРАБОТКА РЕЗУЛЬТАТОВ
5.1. Призменную прочность Rпрвычисляют для каждого образца по формуле
()
где Рр — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);
F — среднее значение площади поперечного сечения образца, определяемое по его линейным размерам по ГОСТ 10180-78.
5.2. Модуль упругости Еsвычисляют для каждого образца при уровне нагрузки, составляющей 30 % от разрушающей, по формуле
()
где s1 = P1F— приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30 % от разрушающей;
P1— соответствующее приращение внешней нагрузки;
ε1у — приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
В пределах ступени нагружения деформации определяют по линейной интерполяции.
5.3. Коэффициент Пуассона бетона µ вычисляют для каждого образца при уровне нагрузки, составляющей 30 % разрушающей, по формуле
()
где ε2у — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки P1 = 0,3Pp и измеренное в начале каждой ступени ее приложения, которое определяют по п. .
5.4 Значения ε1у и ε2у определяют по формулам:
ε1у = ε1 — ∑ε1п; ()
ε2у = ε2 — ∑ε2п, ()
где ε1 и ε2 — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки Р1= 0,3Рр и измеренные в конце ступени ее приложения;
∑ε1п и ∑ε2п — приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки Р1 = 0,3Рр.
Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем — четырем образующим цилиндра.
5.5. Значения относительных деформаций ε1 и ε2 определяют по формулам:
ε1 = Dl1l1; ()
ε2 = Dl2l2, ()
где Dl1, Dl2 — абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;
l1, l2 — фиксированные базы измерения продольной и поперечной деформации образца.
При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины ε1и ε2 определяют непосредственно по шкалам измерительных приборов.
5.6 При определении средних значений призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.
Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения yiпризменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии , определенными по формуле (), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах () и () указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости и коэффициента Пуассона в серии образцов определяют по формуле
()
где — среднее значение указанных величин в серии образцов данного размера;
yi — значение указанных величин по отдельным образцам;
п — число образцов в серии.
5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.
В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:
а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;
б) модуль упругости бетона отдельных образцов, МПа;
в) средний модуль упругости бетона в серии образцов, МПа;
г) значение коэффициента Пуассона отдельных образцов;
д) среднее значение коэффициента Пуассона в серии образцов;
е) база измерения деформаций, мм;
ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);
з) температура нагрева;
и) температура и относительная влажность воздуха помещения, в котором производились испытания.
В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т.д. в соответствии с требованиями ГОСТ 10180-78.
5.8. Применяемые в стандарте основные термины, обозначения и пояснения приведены в приложении .
Модуль деформаций бетона
Начальный модуль упругости бетона при сжатии соответствует лишь упругим деформациям, возникающим при мгновенном загружении или при напряжениях . Он определяется в соответствии с законом Гука как тангенс угла наклона прямой упругих деформаций к оси абсцисс (рис. 1.11), т.е.
где р = 1 МПа — масштабно-размерный коэффициент.
Обычно определяется из специальных опытов на призмах при низком уровне напряжений (), когда бетон можно рассматривать как упругий материал.
При действии на бетон нагрузки, при которой , хотя бы в течение нескольких минут, в связи с развитием пластических деформаций (включая ползучесть) модуль полных деформаций бетона становится величиной переменной.
Для расчёта железобетонных конструкций пользуются средним модулем деформаций или модулем упругопластичности бетона, представляющим собой тангенс угла наклона секущей, проведённой через начало координат и точку на кривой с заданным напряжением, к оси абсцисс, т.е.
Начальный модуль упругости бетона при растяжении по абсолютной величине принимается равным , то есть , а
где vt = 0,15 — значение коэффициента упругопластичности бетона при растяжении в момент, предшествующий разрушению.
Значения модуля сдвига бетона G принимают по установленной в теории упругости зависимости
Подставив в неё начальный коэффициент поперечной деформации бетона ν=0,2, получим .
ЛЕКЦИЯ 3
Арматура для железобетонных конструкций
- Назначение арматуры и требования к ней
2. Виды арматуры
3. Физико-механические свойства арматурных сталей
4. Классификация арматуры по основным характеристикам. Сортамент арматуры
5. Сварные арматурные изделия
6. Соединения арматуры
1. Назначение арматуры и требования к ней
Под арматурой понимают отдельные стержни или целые каркасы, которые располагаются в массе бетона в соответствии со статической схемой работы конструкции.
Арматура в железобетонных конструкциях используется преимущественно для восприятия растягивающих усилий. Но иногда арматуру применяют и для усиления сжатого бетона (например, в колоннах), а также для восприятия температурных и усадочных напряжений.
Арматура для железобетонных конструкций должна удовлетворять следующим требованиям:
под нагрузкой надёжно работать совместно с бетоном (за счёт сцепления) на всех стадиях службы конструкции;
использоваться до предела текучести или предела прочности при исчерпании конструкцией несущей способности.
2. Виды арматуры
Многообразие видов железобетонных конструкций определяет необходимость применения широкой номенклатуры арматурных сталей.
Для изготовления арматуры используют конструкционные стали обычно с содержанием углерода не более 0,65%, так как стали с более высоким содержанием углерода плохо свариваются.
Арматура классифицируется по функциональному назначению и способу изготовления по четырём признакам.
1. По технологии изготовления арматуру делят на: стержневую горячекатаную, термомеханически упрочненную и механически упрочненную в холодном состоянии (холоднодеформированную).
2. По форме наружной поверхности арматура бывает гладкая и периодического профиля.
3. По способу применения: арматура, которую укладывают в конструкцию без предварительного напряжения, называется ненапрягаемой, арматура, которую при изготовлении конструкции предварительно натягивают — напрягаемой.
4. Арматура, устанавливаемая в железобетонных конструкциях по расчёту, называется рабочей. Площадь её поперечного сечения определяется расчётом элементов конструкций на различные нагрузки и воздействия. Её главное назначение — восприятие растягивающих усилий в сечениях. Поэтому она располагается в растянутой зоне вдоль линии действия этих усилий, т. е. перпендикулярно к возможному направлению трещин.
Арматура, устанавливаемая по конструктивным или технологическим соображениям, называется монтажной или распределительной (в плитах). Она обеспечивает проектное положение рабочей арматуры в конструкции и более равномерно распределяет усилия между отдельными стержнями рабочей арматуры. Кроме того, монтажная арматура может воспринимать обычно не учитываемые расчётом усилия от усадки бетона, изменения температуры конструкции и т. п. Она может также выполнять роль рабочей при транспортировании и монтаже конструкции.
Изготовление
В состав бетона В20 входят традиционные компоненты:
- Цемент М400 или М500;
- Песок;
- Щебень;
- Вода.
Пропорции компонентов для цементов разных марок:
Количество компонентов по массе, Цемент : песок : щебень, кг | Количество компонентов по объёму на 10 литров цемента, песок : щебень, л | Количество бетона на выходе из 10 литров цемента, л |
Для цемента М400 | ||
1 : 2,1 : 3,9 | 19 : 34 | 43 |
Для цемента М500 | ||
1 : 2,6 : 4,5 | 24 : 39 | 50 |
Количество воды составляет не более 50% от массы вяжущего. Её количество может быть скорректировано при использовании добавок-пластификаторов – они снижают потребность в жидкости, повышая одновременно подвижность и технические характеристики без потери прочности.
Замес осуществляют в бетономешалке: сначала в нее вводят сухие компоненты, затем воду
Целесообразно заказать партию раствора с завода, в таком случае характеристики материала будут соответствовать ожидаемым, что особенно важно при домостроении
Для избегания образования деформации конструкции до ее застывания и созревания (28 суток) необходимо обеспечить благоприятные условия для твердения: поддерживать уровень влажности и не допускать перепадов температур.
Что влияет на модуль упругости?
- Прямое воздействие оказывают свойства компонентов в бетоне. Мало того, данная подвластность полностью прямолинейная. У бетонов с небольшим весом этот показатель меньше, а вот у более тяжелых крупнозернистых видов он больше.
- Классификация бетона. Для выяснения зависимости искомого коэффициента составлена специальная таблица. Обычный потребитель в работе применяет небольшой перечень данных изделий, в связи с этой причиной нет необходимости приводить ее целиком. По известным показателям прочности и модуля понятно, что они пропорционально зависят друг от друга. Причем, данная зависимость не меняется при температурном воздействии ниже 230С. То есть в основном показатели не меняются вообще. Данный нюанс дает возможность контролировать такую характеристику продукта, как упругость, к тому же это выполнимо в одних и тех же классах материала. Это свойство учитывают для того, чтобы знать какой из продуктов может быть установлен. При возведении загородных частных домов применяют довольно маленький перечень бетонных растворов, согласно их классности. Чаще всего этот выбор происходит в диапазоне от В7 до В30, а также М100, М150, М200, М250, М300, М350, М400. Однако данного ассортимента полностью хватает для возведения малоэтажных зданий. Это возможно, даже если в строительстве применяются плитные цоколи, а также формируются арки для декорирования.
- Возраст бетона. Известна зависимость между повышением искомого коэффициента и периода эксплуатации. По этой причине во время определения показателя в нужный отрезок времени, применяют специальные таблицы. В ней указаны первичные данные, которые необходимо умножить на поправочные модули.
- Метод переработки компонентов. Большую роль играет то, в каких условиях происходило застывание бетона. Ведь он мог отвердеть естественным образом, во время термического воздействия либо с применением автоклава.
- Длительность влияния давления. Чтобы выяснить этот показатель, начальный показатель множат на требуемый модуль. Для каждого из типов бетона данный модуль имеет свое значение. Для легких, тяжелых и мелкозернистых – 0,85, для поризованных – 0,7.
Прежде чем изучить другие нюансы, оказывающие воздействие на анализируемую характеристику, необходимо подробнее рассмотреть такое определение, как ползучесть бетона. Данный показатель оказывает большое влияние на стадию разрушения изделия. Ведь при недолгой малой нагрузке материал деформируется, но после прекращения воздействия он возвращается в изначальное состояние.
Данный момент можно детально не разбирать, так как весьма сложно определить вид деформации. Внешне пластичная и упругая деформация никак не отличается. Однако стоит указать, что пластичное разрушение объясняется свойством ползучести бетона. В частности, именно этот параметр берется в расчет при долгом воздействии на материал. Модуль ползучести также имеет свое буквенное обозначение:
Влагосодержание в окружающем воздухе. Данное обстоятельство связано с модулем ползучести. Если необходимо точное значение, то она также узнается из соответствующих таблиц
В таком случае во внимание также берутся температура и уровень радиационного фона.
Наличие металлического каркаса для армирования. Благодаря своему составу, металл не так сильно подвержен разрушениям вследствие воздействия, в отличие от простого бетона.
Необходимо отметить, что каким бы ни был показатель упругости, металл всегда превосходит бетон по прочности. Благодаря такому свойству, использование каркаса для армирования в любом случае повысит собственный показатель упругости у бетонного изделия.
Характеристики материала
Информация о характеристиках материала необходима при строительстве объектов. Недостаточная прочность может привести к образованию трещин и досрочному выходу сооружения из строя. Прочностные характеристики материала определяются в испытаниях по образцам в лабораторных условиях. Способы исследования бывают разрушающие и неразрушающие.
Для разрушения используются образцы, изготовленные из пробы испытуемой бетонной смеси или полученные бурением поверхности бетонной конструкции. Образцы сжимаются прессом. Нагрузка увеличивается постепенно до того момента, пока образец полностью не разрушится. По величине критической нагрузки и рассчитываются значения прочности материала. Для этого величину нагрузки делят на площадь поперечного сечения испытуемого объекта и умножают на масштабный коэффициент.
Стандарт определения и таблица модулей упругости бетона
Выбор стройматериала является важнейшей задачей строителя перед началом выполнения работ. Модуль упругости бетона — один из главных критериев, влияющих на эксплуатационные характеристики
Параметр определяет возможность стеснения и расширения материала, зависит от многих факторов, которые важно учитывать
Что за величина?
Модуль упругости бетона — это возможность конструкции противостоять изменениям под воздействиями внешних факторов.
Это важный критерий выбора марки материала для определенной работы, так как затвердевший материал в процессе эксплуатации сжимается и растягивается.
Поэтому на этапе проектирования нужно правильно рассчитать допустимые значения для той или иной конструкции. Для расчетов пользуются таблицами определения модуля упругости, что представлены в нормативах для строительных работ.
Разновидности бетона и их показатель упругости
Бетонный камень в окончательном виде — твердый материал, что под влиянием внешней среды способен деформироваться. При постоянных механических нагрузках, даже модуль упругости железобетона может быть недостаточно высоким. Для определения вида прочности учитывается 2 критерия — растяжение и сжатие, что влияют на сопротивление нагрузкам.
Различают следующие виды материала:
Материал может производиться в нескольких разновидностях.
- тяжелые;
- легкие;
- мелкозернистые;
- поризованные;
- автоклавного твердения.
Таблица, содержащая классы и соответствующие модули упругости
Классификация в таблице производится согласно СП 52—101—2003:
Класс бетона | Модуль упругости |
19,0 | В10 |
24,0 | В15 |
27,5 | В20 |
30,0 | В25 |
32,5 | В30 |
34,5 | В35 |
36,0 | В40 |
37,0 | В45 |
38,0 | В50 |
39,0 | В55 |
39,5 | В60 |
От чего зависит величина?
На величину данного показателя значительно влияет наполнитель в материала.
Упругость раствора зависит от множества факторов
Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора
Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень
Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители
Учитывают не только интенсивность нагрузок, но и частоту.
Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C).
Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный).
Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.
Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.
Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций.
Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.
Посмотреть «ГОСТ 24452-80» или cкачать в PDF (350 KB)
Как определить?
СП 52 101 2003 — стандарт определения параметров применения бетона.
Здесь указаны значения всех необходимых коэффициентов для расчета параметров, а подтверждение проводится путем эксперимента на изготовленных образцах.
Суть испытания заключается в постепенной нагрузке на образцы (цилиндры или призмы из бетонной смеси) путем осевого сжимающего нагружения до разрушения. Параллельно измеряется степень деформации.
Посмотреть «СП 52-101-2003» или cкачать в PDF (1007.4 KB)
Результаты можно обозначить следующим образом:
- Показатель соответствует расчетам, образец поддался пластической деформации без растрескивания.
- Предварительные подсчеты неверные: при предполагаемом нагружении образец подвергается сильным разрушениям.
Расчетным способом определяют запас прочности не только обычных зданий, но и арочных сооружений, перекрытий, мостов и дорог. Модуль упругости асфальтобетона при использовании — проблемная задача проектирования, так как подход, разрешающий провести точные расчеты еще не выведен. Не удается определить взаимосвязь между статическим и динамическим модулями в процессе использования дорог.